The shape, structure and connectivity of nerve cells are important aspects of neuronal function. Genetic and epigenetic factors that alter neuronal morphology or synaptic localization of pre- and post-synaptic proteins contribute significantly to neuronal output and may underlie clinical states. To assess the impact of individual genes and disease-causing mutations on neuronal morphology, reliable methods are needed. Unfortunately, manual analysis of immuno-fluorescence images of neurons to quantify neuronal shape and synapse number, size and distribution is labor-intensive, time-consuming and subject to human bias and error. We have developed an automated image analysis routine using steerable filters and deconvolutions to automatically analyze dendrite and synapse characteristics in immuno-fluorescence images. Our approach reports dendrite morphology, synapse size and number but also synaptic vesicle density and synaptic accumulation of proteins as a function of distance from the soma as consistent as expert observers while reducing analysis time considerably. In addition, the routine can be used to detect and quantify a wide range of neuronal organelles and is capable of batch analysis of a large number of images enabling high-throughput analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneumeth.2010.12.011DOI Listing

Publication Analysis

Top Keywords

neuronal morphology
12
morphology synapse
8
synapse number
8
number synaptic
8
immuno-fluorescence images
8
neuronal
7
analysis
5
automated analysis
4
analysis neuronal
4
morphology
4

Similar Publications

Introduction: Dysfunction of the enteric nervous system (ENS) is linked to a myriad of gastrointestinal (GI) disorders. Piezo1 is a mechanosensitive ion channel found throughout the GI tract, but its role in the ENS is largely unknown. We hypothesize that Piezo1 plays an important role in the growth and development of the ENS.

View Article and Find Full Text PDF

Retinal glia in myopia: current understanding and future directions.

Front Cell Dev Biol

December 2024

Department of Ophthalmology, Laboratory of Optometry and Vision Sciences, Department of Optometry and Visual Science. West China Hospital, Sichuan University, Chengdu, Sichuan, China.

Myopia, a major public health problem, involves axial elongation and thinning of all layers of the eye, including sclera, choroid and retina, which defocuses incoming light and thereby blurs vision. How the various populations of glia in the retina are involved in the disorder is unclear. Astrocytes and Müller cells provide structural support to the retina.

View Article and Find Full Text PDF

Different neuron types develop characteristic axonal and dendritic arborizations that determine their inputs, outputs, and functions. Expression of fate-determinant transcription factors is essential for specification of their distinct identities. However, the mechanisms downstream of fate-determinant factors coordinating different aspects of neuron identity are not understood.

View Article and Find Full Text PDF

Purpose: Autologous retinal transplantation has been successfully employed in the treatment of large and myopic macular holes that are refractory to standard surgical treatments. Patients transplanted with a peripheral neurosensory retinal graft have shown unexpected improvements in visual acuity. The study aims to investigate if neural integration of the graft takes place in a porcine model of retinal hole.

View Article and Find Full Text PDF

Introduction: Neural stem cells from the subventricular zone (SVZ) neurogenic niche provide neurons that integrate in the olfactory bulb circuitry. However, in response to cortical injuries, the neurogenic activity of the SVZ is significantly altered, leading to increased number of neuroblasts with a modified migration pattern that leads cells towards the site of injury. Despite the increased neurogenesis and migration, many newly generated neurons fail to survive or functionally integrate into the cortical circuitry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!