Early morbidity encountered in the dietary-related mouse model of Barrett's esophagus: a question of zinc?

Dis Esophagus

Department of Surgery,Pathology, andGastroenterology and Hepatology, Erasmus MC, Rotterdam, andDepartment of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.

Published: July 2011

Recently, a mouse model for Barrett's esophagus based on a zinc-deficient diet supplemented with deoxycholic bile acids has been published. The aim of this study was to attempt to reproduce these data and extend them by employing genetically modified mice and intraperitoneal iron supplementation. The study design encompassed six experimental groups (wild type, Apc-mutant and Smad4-mutant mice, with or without iron injections), with all animals fed with the zinc-deficient diet supplemented with deoxycholic bile acids. All treatments were started at 3-5 weeks of age (the majority [78%] at 5 weeks). Animals were scheduled for euthanasia at two distinct time points, namely at 3 and 6 months of age. All mice showed signs of considerable distress already 4 weeks after the start of the modified diets, and had to be euthanized before the first evaluation time point (mean age 9.3 weeks, range 5-15 weeks). No differences were observed between wild type and genetically modified mice, or between animals with or without iron supplementation. On histological examination, we could not detect any lesions (Barrett's esophagus-like or tumors) other than esophagitis. In the currently presented experimental settings, we were not able to reproduce the mouse model according to which Barrett's-like lesions could be detected in animals fed with the zinc-deficient diet supplemented with deoxycholic bile acids.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1442-2050.2010.01151.xDOI Listing

Publication Analysis

Top Keywords

mouse model
12
zinc-deficient diet
12
diet supplemented
12
supplemented deoxycholic
12
deoxycholic bile
12
bile acids
12
model barrett's
8
barrett's esophagus
8
genetically modified
8
modified mice
8

Similar Publications

Cellular and gene therapy (CGT) products have emerged as a popular approach in regenerative medicine, showing promise in treating various pancreatic and liver diseases in numerous clinical trials. Before these therapies can be tested in human clinical trials, it is essential to evaluate their safety and efficacy in relevant animal models. Such preclinical testing is often required to obtain regulatory approval for investigational new drugs.

View Article and Find Full Text PDF

Chondrocyte senescence is an important pathogenic factor causing osteoarthritis (OA) progression through persistently producing pro-inflammatory factors. Mesenchymal stem cells-derived small extracellular vesicles (MSC-sEVs) have shown anti-inflammatory effects in OA models, while persistent existence of senescent chondrocytes still promotes cartilage destruction. Therefore, improving the targeted elimination ability on senescent chondrocytes is required to facilitate the translation of MSC-sEVs in OA treatment.

View Article and Find Full Text PDF

Liver organoids have been increasingly adopted as a critical in vitro model to study liver development and diseases. However, the pre-vascularization of liver organoids without affecting liver parenchymal specification remains a long-lasting challenge, which is essential for their application in regenerative medicine. Here, the large-scale formation of pre-vascularized human hepatobiliary organoids (vhHBOs) is presented without affecting liver epithelial specification via a novel strategy, namely nonparenchymal cell grafting (NCG).

View Article and Find Full Text PDF

Genetic landscape in undiagnosed patients with syndromic hearing loss revealed by whole exome sequencing and phenotype similarity search.

Hum Genet

January 2025

Division of Hearing and Balance Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-Ku, Tokyo, 152-8902, Japan.

There are hundreds of rare syndromic diseases involving hearing loss, many of which are not targeted for clinical genetic testing. We systematically explored the genetic causes of undiagnosed syndromic hearing loss using a combination of whole exome sequencing (WES) and a phenotype similarity search system called PubCaseFinder. Fifty-five families with syndromic hearing loss of unknown cause were analyzed using WES after prescreening of several deafness genes depending on patient clinical features.

View Article and Find Full Text PDF

Chrysoeriol: a natural RANKL inhibitor targeting osteoclastogenesis and ROS regulation for osteoporosis therapy.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

The Key Laboratory of Spine and Spinal Cord Disease of Jiangxi Province, Nanchang, 330006, China.

Chrysoeriol (CHE) is a naturally occurring compound with established anti-inflammatory and anti-tumor effects. This study examines its potential role in regulating osteoclast differentiation and activity, both of which are crucial for bone remodeling. Computational docking revealed high binding affinity between CHE and RANKL, specifically at the Lys-181 residue of RANKL, suggesting potential inhibitory interactions on osteoclastogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!