Proteins tightly bound to DNA (TBP) comprise a group of proteins that remain bound to DNA after usual deproteinization procedures such as salting out and treatment with phenol or chloroform. TBP bind to DNA by covalent phosphotriester and noncovalent ionic and hydrogen bonds. Some TBP are conservative, and they are usually covalently bound to DNA. However, the TBP composition is very diverse and significantly different in different tissues and in different organisms. TBP include transcription factors, enzymes of the ubiquitin-proteasome system, phosphatases, protein kinases, serpins, and proteins of retrotransposons. Their distribution within the genome is nonrandom. However, the DNA primary structure or DNA curvatures do not define the affinity of TBP to DNA. But there are repetitive DNA sequences with which TBP interact more often. The TBP distribution within genes and chromosomes depends on a cell's physiological state, differentiation type, and stage of organism development. TBP do not interact with DNA in the sites of its association with nuclear matrix and most likely they are not components of the latter.

Download full-text PDF

Source
http://dx.doi.org/10.1134/s0006297910100056DOI Listing

Publication Analysis

Top Keywords

bound dna
16
dna
10
tbp
9
proteins tightly
8
tightly bound
8
dna tbp
8
tbp interact
8
proteins
4
bound
4
dna data
4

Similar Publications

Cryo-EM structure of AAV2 Rep68 bound to integration site AAVS1: insights into the mechanism of DNA melting.

Nucleic Acids Res

January 2025

Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States.

The Rep68 protein from Adeno-Associated Virus (AAV) is a multifunctional SF3 helicase that performs most of the DNA transactions necessary for the viral life cycle. During AAV DNA replication, Rep68 assembles at the origin of replication, catalyzing the DNA melting and nicking reactions during the hairpin rolling replication process to complete the second-strand synthesis of the AAV genome. We report the cryo-electron microscopy structures of Rep68 bound to the adeno-associated virus integration site 1 in different nucleotide-bound states.

View Article and Find Full Text PDF

fungal species are considered major plant pathogens, infecting various crops and resulting in significant agricultural losses. Additionally, these species can contaminate grain with multiple mycotoxins that are harmful to humans and animals. Efficient pest management relies on timely detection and identification of phytopathogens in plant and grain samples, facilitating prompt selection of a crop protection strategy.

View Article and Find Full Text PDF

Sister chromatid cohesion through the lens of biochemical experiments.

Curr Opin Cell Biol

January 2025

Department of Chromosome Science, National Institute of Genetics, Mishima, 411-8540, Japan; Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Mishima, 411-8540, Japan. Electronic address:

Faithful chromosome segregation in eukaryotes relies on physical cohesion between newly duplicated sister chromatids. Cohesin is a ring-shaped ATPase assembly that mediates sister chromatid cohesion through its ability to topologically entrap DNA. Cohesin, assisted by several regulatory proteins, binds to DNA prior to DNA replication and then holds two sister DNAs together when it encounters the replication machinery.

View Article and Find Full Text PDF

Noncanonical inhibition of topoisomerase II alpha by oxidative stress metabolites.

Redox Biol

January 2025

University of Chicago, Department of Molecular Genetics and Cell Biology, 929 E. 57th Street, Chicago, IL, 60637, USA. Electronic address:

During its catalytic cycle, the homodimeric ATPase topoisomerase II alpha (TOP2A) cleaves double stranded DNA and remains covalently bound to 5' ends via tyrosine phosphodiester bonds. After passing a second, intact duplex through, TOP2A rejoins the break and releases from the DNA. Thereby, TOP2A can relieve strain accumulated during transcription, replication and chromatin remodeling and disentangle sister chromatids for mitosis.

View Article and Find Full Text PDF

A novel ADP-directed chaperone function facilitates the ATP-driven motor activity of SARS-CoV helicase.

Nucleic Acids Res

January 2025

Single-Molecule and Cell Mechanobiology Laboratory, Daejeon, 34141, South Korea.

Helicase is a nucleic acid motor that catalyses the unwinding of double-stranded (ds) RNA and DNA via ATP hydrolysis. Helicases can act either as a nucleic acid motor that unwinds its ds substrates or as a chaperone that alters the stability of its substrates, but the two activities have not yet been reported to act simultaneously. Here, we used single-molecule techniques to unravel the synergistic coordination of helicase and chaperone activities, and found that the severe acute respiratory syndrome coronavirus helicase (nsp13) is capable of two modes of action: (i) binding of nsp13 in tandem with the fork junction of the substrate mechanically unwinds the substrate by an ATP-driven synchronous power stroke; and (ii) free nsp13, which is not bound to the substrate but complexed with ADP in solution, destabilizes the substrate through collisions between transient binding and unbinding events with unprecedented melting capability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!