Objective: The purpose of this study was to evaluate the microtensile bond strength of resin cement to a feldspathic ceramic after treating the surface with (a) hydrofluoric (HF) acid, (b) air abrasion, (c) Er:YAG laser irradiation, (d) Nd:YAG laser irradiation, and (e) HF acid etching after either air abrasion or laser irradiation.
Background Data: It is unknown whether the laser application or its combination with another treatment method can be used as a tool to roughen the surface of a feldspathic ceramic in order to increase the bond strength between the resin cement and ceramic surface.
Materials And Methods: Forty feldspathic ceramic blocks (Ceramco(TM)) were prepared and divided into eight equal groups (n = 5) according to the following surface treatments: no treatment; etching with 9.5% HF acid; air abrasion with 50 μm Al(2)O(3); Er:YAG laser irradiation; Nd:YAG laser irradiation; air abrasion plus acid etching; Er:YAG laser plus acid etching; and Nd:YAG laser plus acid etching. After surface treatment, a silane-coupling agent and resin cement (Panavia F(TM)) were applied to each block. After storing for 24 h at 37°C and thermocycling between 5°C and 55°C for 1000 cycles, the microtensile bond strength of each specimen was measured.
Results: The highest bond strength was obtained from HF acid etching. HF acid etching after each laser irradiation significantly increased the bond strength (p < 0.05). However, HF acid etching after air abrasion decreased bond strength when compared to air abrasion alone.
Conclusions: HF acid etching is the most effective surface treatment method for a feldspathic ceramic. However, laser irradiation with either the Er:YAG or Nd:YAG laser is not an adequate method for improving the bond strength of Panavia F. The laser application should be combined with HF acid etching.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/pho.2009.2746 | DOI Listing |
Med Sci Monit
January 2025
College of Dentistry, King Khalid University, Abha, Saudi Arabia.
BACKGROUND Indirect ceramic restorations often need multiple firings to match the shade of natural teeth or need after-correction and ceramic addition during the clinical trial stage. Many studies have examined how multiple firings affect the mechanical characteristics of zirconia-veneered prostheses. The effect of firing number on adhesion between these core and heat-pressed lithium disilicate veneering ceramics is unclear.
View Article and Find Full Text PDFSci Rep
January 2025
Conservative Dentistry Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt.
This study aimed to compare the bonding efficacy three bioactive self-adhesive restorative systems to dentin. A total of 80 permanent human molars were utilized in this study. The occlusal enamel was removed to exposed mid-coronal dentin; 40 molars were used for microshear bond strength testing, while the remaining molars were used for micromorphological analysis of restoration/dentin interface.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
School of Food Science and Technology, Jiangnan University, Wuxi, PR China.
This study investigates camel milk protein structural dynamics during digestion using Fourier Transform Infrared (FTIR) spectroscopy and Two-Dimensional Infrared (2D-IR) homo-correlation and hetero-correlation analysis. The synchronous 2DIR homo-correlation map reveals that NH bending and C-N stretching vibrations (amide II) are sensitive to digestion, indicating significant impacts on secondary structures. The asynchronous 2DIR homo-correlation indicates a stepwise process, where initial disruptions in NH interactions precede changes in CO stretching vibrations (amide I), highlighting the sequence of structural alterations during protein unfolding and degradation.
View Article and Find Full Text PDFMater Horiz
January 2025
Department of Materials Science, University of Michigan, Ann Arbor, Michigan 48109, USA.
It is difficult to intuit how electronic structure features-such as band gap magnitude, location of band extrema, effective masses, -arise from the underlying crystal chemistry of a material. Here we present a strategy to distill sparse and chemically-interpretable tight-binding models from density functional theory calculations, enabling us to interpret how multiple orbital interactions in a 3D crystal conspire to shape the overall band structure. Applying this process to silicon, we show that its indirect gap arises from a competition between first and second nearest-neighbor bonds-where second nearest-neighbor interactions pull the conduction band down from Γ to X in a cosine shape, but the first nearest-neighbor bonds push the band up near X, resulting in the characteristic dip of the silicon conduction band.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar-470003, India.
In a recent communication (A. Shivhare, B. Dehariya, S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!