Harmful algal blooms (HABs) are a serious public health risk in coastal waters. As the intensity and frequency of HABs continue to rise, new methods of detection are needed for reliable identification. Herein, we developed a high-throughput, multiplex, bead array technique for the detection of the dinoflagellates Karenia brevis and Karenia mikimotoi. The method combined the Luminex detection system with two novel technologies: locked nucleic acid-modified oligonucleotides (LNA) and Mirus Label IT(®) nucleic acid technology. To study the feasibility of the method, we evaluated the performance of modified and unmodified LNA probes with amplicon targets that were biotin labeled with two different strategies: direct chemical labeling (Mirus Label IT) versus enzymatic end-labeling (single biotinylated primer). The results illustrated that LNA probes hybridized to complementary single-stranded DNA with better affinity and displayed higher fluorescence intensities than unmodified oligonucleotide DNA probes. The latter effect was more pronounced when the assay was carried out at temperatures above 53°C degree. As opposed to the enzymatic 5' terminal labeling technique, the chemical-labeling method enhanced the level of fluorescence by as much as ~83%. The detection limits of the assay, which were established with LNA probes and Mirus Label IT system, ranged from 0.05 to 46 copies of rRNA. This high-throughput method, which represents the first molecular detection strategy to integrate Luminex technology with LNA probes and Mirus Label IT, can be adapted for the detection of other HABs and is well suited for the monitoring of red tides at pre-blooming and blooming conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3001626 | PMC |
http://dx.doi.org/10.4319/lom.2010.8.269 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!