We report on a passively mode-locked optically pumped GaSb-based semiconductor disk laser producing stable picosecond optical pulses at a 1.95 μm wavelength. The gain mirror was comprised of a 15 quantum well InGaSb/GaSb structure. A fast semiconductor saturable absorber mirror with three InGaSb/GaSb quantum wells was used to attain self-starting mode-locked operation at a fundamental repetition rate of 881.2 MHz. The laser produced pulses with 30 pJ energy and a duration of 1.1 ps within a factor of 2 of the Fourier limit.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.35.004090DOI Listing

Publication Analysis

Top Keywords

passively mode-locked
8
gasb-based semiconductor
8
semiconductor disk
8
disk laser
8
picosecond passively
4
mode-locked gasb-based
4
laser operating
4
operating μm
4
μm report
4
report passively
4

Similar Publications

Mode-locked lasers are of interest for applications such as biological imaging, nonlinear frequency conversion, and single-photon generation. In the infrared, chip-integrated mode-locked lasers have been demonstrated through integration of laser diodes with low-loss photonic circuits. However, additional challenges, such as a higher propagation loss and smaller alignment tolerances, have prevented the realization of such lasers in the visible range.

View Article and Find Full Text PDF

In research and engineering, short laser pulses are fundamental for metrology and communication. The generation of pulses by passive mode-locking is especially desirable due to the compact setup dimensions, without the need for active modulation requiring dedicated external circuitry. However, well-established models do not cover regular self-pulsing in gain media that recover faster than the cavity round trip time.

View Article and Find Full Text PDF

Wavelength-Switchable Ytterbium-Doped Mode-Locked Fiber Laser Based on a Vernier Effect Filter.

Micromachines (Basel)

October 2024

School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China.

A wavelength-switchable ytterbium-doped mode-locked fiber laser is reported in this article. Two Mach-Zehnder interferometers (MZIs, denoted as MZI1, MZI2) with close free spectral ranges (FSRs) are connected in series to form a Vernier effect sensor. By utilizing the filtering effect of the Vernier effect sensor, the wavelength-switchable output of an ytterbium-doped mode-locked fiber laser is realized.

View Article and Find Full Text PDF

We demonstrated a dispersion-managed 2 µm ultrafast laser based on Tm:ZBLAN fiber. By controlling intracavity net dispersion using passive fibers, we observed soliton, stretched-pulse, and dissipative-soliton mode-locked operations. In particular, the broadest output spectrum with a bandwidth at 30 dB below the peak of 320 nm and a pulse duration of 61 fs were obtained at a net dispersion of -0.

View Article and Find Full Text PDF

In this study, we demonstrated a few-cycle pulse generation system delivering an 8-fs and 13-nJ pulse. The oscillator of this system is a mode-locked fiber laser based on a nonlinear amplifying loop mirror (NALM), which is injected into the gain management nonlinear (GMN) amplifier after pre-chirp management by a chirped fiber Bragg grating (CFBG) and a passive fiber. Subsequently, a hollow-core photonic bandgap (HC-PBG) fiber is employed to compensate for the dispersion, achieving a pulse duration of 49.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!