Three dimensional (3D) imaging systems have been recently suggested for passive sensing and recognition of objects in photon-starved environments where only a few photons are emitted or reflected from the object. In this paradigm, it is important to make optimal use of limited information carried by photons. We present a statistical framework for 3D passive object recognition in presence of noise. Since in quantum-limited regime, detector dark noise is present, our approach takes into account the effect of noise on information bearing photons. The model is tested when background noise and dark noise sources are present for identifying a target in a 3D scene. It is shown that reliable object recognition is possible in photon-counting domain. The results suggest that with proper translation of physical characteristics of the imaging system into the information processing algorithms, photon-counting imagery can be used for object classification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.18.026450 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!