We introduce a new class of plasmonic crystals possessing graphene-like internal symmetries and Dirac-type spectrum in k-space. We study dynamics of surface plasmon polaritons supported in the plasmonic crystals by employing the formalism of Dirac dynamics for relativistic quantum particles. Through an analogy with graphene, we introduce a concept of pseudo-spin and chirality to indicate built-in symmetry of the plasmonic crystals near Dirac point. The surface plasmon polaritons with different pseudo-spin states are shown to split in the crystals into two beams, analogous to spin Hall effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.18.025329 | DOI Listing |
Molecules
December 2024
Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy.
Using the framework of an investigation of the stimuli-responsive behavior of peptide assembly on a solid surface, this study on the behavior of a chemisorbed peptide on a gold surface was performed. The studied peptide is a dimeric form of the antimicrobial peptide Trichogin GAIV, which was also modified by substituting the glycine with lysine residues, while the N-terminus octanoyl group was replaced by a lipoic one that was able to bind to the gold surface. In this way, a chemically linked peptide assembly that is pH-responsive was obtained because of the protonation/deprotonation of the sidechains of the Lys residues.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China.
In the case of waveguide-based devices, once they are fabricated, their optical properties are already determined and cannot be dynamically controlled, which limits their applications in practice. In this paper, an isosceles triangular-coupling structure which consists of an isosceles triangle coupled with a two-bus waveguide is proposed and researched numerically and theoretically. The coupled mode theory (CMT) is introduced to verify the correctness of the simulation results, which are based on the finite difference time domain (FDTD).
View Article and Find Full Text PDFSci Rep
January 2025
Physics Department, Faculty of Sciences, TH-PPM Group, Beni-Suef University, Beni Suef, 62514, Egypt.
This theoretical work focuses on the application of Tamm resonance-based biosensing using a one-dimensional photonic crystal for detecting skin vitiligo, a condition caused by the loss of pigment in the body. This biosensor utilizes the interaction of light with the photonic structure to identify the specific biomarkers associated with vitiligo. The proposed structure is composed of prism/Ag/skin-sample/(GaP/PS)/glass.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
We report a nonlinear terahertz (THz) detection device based on a metallic bull's-eye plasmonic antenna. The antenna, fabricated with femtosecond laser direct writing and deposited on a nonlinear gallium phosphide (GaP) crystal, focuses incoming THz waveforms within the sub-wavelength bull's eye region to locally enhance the THz field. Additionally, the plasmonic structure minimizes diffraction effects allowing a relatively long interaction length between the transmitted THz field and the co-propagating near-infrared gating pulse used in an electro-optic sampling configuration.
View Article and Find Full Text PDFACS Nano
January 2025
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, PR China.
The ever-growing interest in MXenes has been driven by their distinct electrical, thermal, mechanical, and optical properties. In this context, further revealing their physicochemical attributes remains the key frontier of MXene materials. Herein, we report the anisotropic localized surface plasmon resonance (LSPR) features in TiCT MXene as well as site-selective photocatalysis enabled by the photophysical anisotropy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!