LDPC-coded orbital angular momentum (OAM) modulation for free-space optical communication.

Opt Express

Department of Electrical and Computer Engineering, University of Arizona, 1230 E. Speedway Blvd., Tucson, AZ 85721, USA.

Published: November 2010

An orbital angular momentum (OAM) based LDPC-coded modulation scheme suitable for use in FSO communication is proposed. We demonstrate that the proposed scheme can operate under strong atmospheric turbulence regime and enable 100 Gb/s optical transmission while employing 10 Gb/s components. Both binary and nonbinary LDPC-coded OAM modulations are studied. In addition to providing better BER performance, the nonbinary LDPC-coded modulation reduces overall decoder complexity and latency. The nonbinary LDPC-coded OAM modulation provides a net coding gain of 9.3 dB at the BER of 10(-8). The maximum-ratio combining scheme outperforms the corresponding equal-gain combining scheme by almost 2.5 dB.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.18.024722DOI Listing

Publication Analysis

Top Keywords

nonbinary ldpc-coded
12
orbital angular
8
angular momentum
8
momentum oam
8
oam modulation
8
ldpc-coded modulation
8
ldpc-coded oam
8
combining scheme
8
ldpc-coded
5
ldpc-coded orbital
4

Similar Publications

A Nonbinary LDPC-Coded Probabilistic Shaping Scheme for a Rayleigh Fading Channel.

Entropy (Basel)

November 2022

School of Information and Communication Engineering, North University of China, Taiyuan 030051, China.

In this paper, a novel, nonbinary (NB) LDPC-coded probabilistic shaping (PS) scheme for a Rayleigh fading channel is proposed. For the NB LDPC-coded PS scheme in Rayleigh fading channel, the rotation angle of 16 quadrature amplitude modulation (QAM) constellations, 64QAM constellations and 256QAM constellations are optimized by the exhaustive search. The simulation results verify the information-theoretical analysis.

View Article and Find Full Text PDF

We propose and experimentally demonstrate a two-stage cross-talk mitigation method in an orbital-angular-momentum (OAM)-based free-space optical communication system, which is enabled by combining spatial offset and low-density parity-check (LDPC) coded nonuniform signaling. Different from traditional OAM multiplexing, where the OAM modes are centrally aligned for copropagation, the adjacent OAM modes (OAM states 2 and -6 and OAM states -2 and 6) in our proposed scheme are spatially offset to mitigate the mode cross talk. Different from traditional rectangular modulation formats, which transmit equidistant signal points with uniform probability, the 5-quadrature amplitude modulation (5-QAM) and 9-QAM are introduced to relieve cross-talk-induced performance degradation.

View Article and Find Full Text PDF

A mutual information inspired nonbinary coded modulation design with non-uniform shaping is proposed. Instead of traditional power of two signal constellation sizes, we design 5-QAM, 7-QAM and 9-QAM constellations, which can be used in adaptive optical networks. The non-uniform shaping and LDPC code rate are jointly considered in the design, which results in a better performance scheme for the same SNR values.

View Article and Find Full Text PDF

In this paper, we first describe a 9-symbol non-uniform signaling scheme based on Huffman code, in which different symbols are transmitted with different probabilities. By using the Huffman procedure, prefix code is designed to approach the optimal performance. Then, we introduce an algorithm to determine the optimal signal constellation sets for our proposed non-uniform scheme with the criterion of maximizing constellation figure of merit (CFM).

View Article and Find Full Text PDF

Evaluation of four-dimensional nonbinary LDPC-coded modulation for next-generation long-haul optical transport networks.

Opt Express

April 2012

Department of Electrical and Computer Engineering, University of Arizona, 1230 E. Speedway Blvd., Tucson, Arizona 85721, USA.

Leveraging the advanced coherent optical communication technologies, this paper explores the feasibility of using four-dimensional (4D) nonbinary LDPC-coded modulation (4D-NB-LDPC-CM) schemes for long-haul transmission in future optical transport networks. In contrast to our previous works on 4D-NB-LDPC-CM which considered amplified spontaneous emission (ASE) noise as the dominant impairment, this paper undertakes transmission in a more realistic optical fiber transmission environment, taking into account impairments due to dispersion effects, nonlinear phase noise, Kerr nonlinearities, and stimulated Raman scattering in addition to ASE noise. We first reveal the advantages of using 4D modulation formats in LDPC-coded modulation instead of conventional two-dimensional (2D) modulation formats used with polarization-division multiplexing (PDM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!