Demonstration of high-fidelity dynamic optical arbitrary waveform generation.

Opt Express

Department of Electrical and Computer Engineering, University of California, Davis, One Shields Ave, Davis, California 95616, USA.

Published: October 2010

We experimentally demonstrate a dynamic line-by-line optical arbitrary waveform generation technique capable of generating continuous and bandwidth scalable high-fidelity waveforms without update rate limitations. Two quadrature modulators are used to create up to three spectral slices that are coherently combined by a passband-shaped multiplexer into a single contiguous spectrum to form complex optical waveforms with up to 30 GHz of bandwidth and 6 ns record lengths.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.18.022988DOI Listing

Publication Analysis

Top Keywords

optical arbitrary
8
arbitrary waveform
8
waveform generation
8
demonstration high-fidelity
4
high-fidelity dynamic
4
dynamic optical
4
generation experimentally
4
experimentally demonstrate
4
demonstrate dynamic
4
dynamic line-by-line
4

Similar Publications

Multidimensional free shape-morphing flexible neuromorphic devices with regulation at arbitrary points.

Nat Commun

January 2025

Institute of Optoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China.

Biological neural systems seamlessly integrate perception and action, a feat not efficiently replicated in current physically separated designs of neural-imitating electronics. This segregation hinders coordination and functionality within the neuromorphic system. Here, we present a flexible device tailored for neuromorphic computation and muscle actuation.

View Article and Find Full Text PDF

How are arbitrary sequences of verbal information retained and manipulated in working memory? Increasing evidence suggests that serial order in verbal WM is spatially coded and that spatial attention is involved in access and retrieval. Based on the idea that brain areas controlling spatial attention are also involved in oculomotor control, we used eye tracking to reveal how the spatial structure of serial order information is accessed in verbal working memory. In two experiments, participants memorized a sequence of auditory words in the correct order.

View Article and Find Full Text PDF

All-angle unidirectional flat-band acoustic metasurfaces.

Nat Commun

January 2025

Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.

Flat bands have empowered novel phenomena such as robust canalization with strong localization, high-collimation and low-loss propagation. However, the spatial symmetry protection in photonic or acoustic lattices naturally forces flat bands to manifest in pairs aligned at an inherently specific angle, resulting in a fixed bidirectional canalization. Here, we report an acoustic flat-band metasurface, allowing not only unidirectional canalization at all in-plane angles but also robust tunability in band alignment.

View Article and Find Full Text PDF

Van der Waals electrode integration is a promising strategy to create nearly perfect interfaces between metals and 2D materials, with advantages such as eliminating Fermi-level pinning and reducing contact resistance. However, the lack of a simple, generalizable pick-and-place transfer technology has greatly hampered the wide use of this technique. We demonstrate the pick-and-place transfer of prefabricated electrodes from reusable polished hydrogenated diamond substrates without the use of any sacrificial layers due to the inherent low-energy and dangling-bond-free nature of the hydrogenated diamond surface.

View Article and Find Full Text PDF

Interference of surface plasmons has been widely utilized in optical metrology for applications such as high-precision sensing. In this paper, we introduce a surface plasmon interferometer with the potential to be arranged in arrays for parallel multiplexing applications. The interferometer features two grating couplers that excite surface plasmon polariton (SPP) waves traveling along a gold-air interface before converging at a gold nanoslit where they interfere.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!