Aerobic fitness determines whole-body fat oxidation rate during exercise in the heat.

Appl Physiol Nutr Metab

Exercise Physiology Lab at Toledo, Universidad de Castilla-La Mancha, Avda. Carlos III, s/n, Toledo, 45071, Spain.

Published: December 2010

The purpose of this study was to determine whole-body fat oxidation in endurance-trained (TR) and untrained (UNTR) subjects exercising at different intensities in the heat. On 3 occasions, 10 TR cyclists and 10 UNTR healthy subjects (peak oxygen uptake = 60 ± 6 vs. 44 ± 3 mL·kg-1·min-1; p < 0.05) exercised at 40%, 60%, and 80% peak oxygen uptake in a hot, dry environment (36 °C; 25% relative humidity). To complete the same amount of work in all 3 trials, exercise duration varied (107 ± 4, 63 ± 1, and 45 ± 0 min for 40%, 60%, and 80% peak oxygen uptake, respectively). Substrate oxidation was calculated using indirect calorimetry. Blood samples were collected at the end of exercise to determine plasma epinephrine ([EPI]plasma) and norepinephrine ([NEPI]plasma) concentrations. The maximal rate of fat oxidation was achieved at 60% peak oxygen uptake for the TR group (0.41 ± 0.01 g·min-1) and at 40% peak oxygen uptake for the UNTR group (0.28 ± 0.01 g·min-1). TR subjects oxidized absolutely (g·min-1) and relatively (% of total energy expenditure) more fat than UNTR subjects at 60% and 80% peak oxygen uptake (p < 0.05). At these exercise intensities, TR subjects also had higher [NEPI]plasma concentrations than UNTR subjects (p < 0.05). In the heat, whole-body peak fat oxidation occurs at higher relative exercise intensities in TR than in UNTR subjects (60% vs. 40% peak oxygen uptake). Moreover, TR subjects oxidize more fat than UNTR subjects when exercising at moderate to high intensities (>60% peak oxygen uptake).

Download full-text PDF

Source
http://dx.doi.org/10.1139/H10-068DOI Listing

Publication Analysis

Top Keywords

peak oxygen
32
oxygen uptake
32
untr subjects
20
fat oxidation
16
60% 80%
12
80% peak
12
subjects
9
peak
9
whole-body fat
8
subjects exercising
8

Similar Publications

Background: Systemic inflammation, aging, and type 2 diabetes (T2D) lead to varying degrees of cardiovascular dysfunction and impaired aerobic exercise capacity. This study evaluates the impact of inflammation and sex differences on coronary and peripheral vascular function and exercise capacity in older individuals with and without T2D.

Methods: Older individuals (aged≥65 years) underwent biochemical and tissue inflammatory phenotyping, cardiopulmonary exercise testing, cardiovascular magnetic resonance imaging, and vascular reactivity testing.

View Article and Find Full Text PDF

Background: Low cardiorespiratory fitness predicts worse postoperative outcomes, exacerbated by age and frailty. Preoperative High-Intensity Interval Training (HIIT) improves cardiorespiratory fitness and postoperative outcomes but is challenging to implement in frailty due to perceived risks.

Purpose: The aim of this case report was to demonstrate feasibility of HIIT in a patient with frailty and multimorbidity.

View Article and Find Full Text PDF

TiN Boosting the Oxygen Reduction Performance of Fe-N-C through the Relay-Catalyzing Mechanism for Metal-Air Batteries.

ACS Appl Mater Interfaces

January 2025

Department of Aviation Oil and Material, Air Force Logistics Academy, 72 Xi Ge Road, Xuzhou, Jiangsu 221000, China.

Metal-air batteries desire highly active, durable, and low-cost oxygen reduction catalysts to replace expensive platinum (Pt). The Fe-N-C catalyst is recognized as the most promising candidate for Pt; however, its durability is hindered by carbon corrosion, while activity is restricted due to limited oxygen for the reaction. Herein, TiN is creatively designed to be hybridized with Fe-N-C (TiN/Fe-N-C) to relieve carbon corrosion and absorb more oxygen when catalyzing oxygen reduction.

View Article and Find Full Text PDF

Ischemic Area-Targeting and Self-Monitoring Nanoprobes Ameliorate Myocardial Ischemia/Reperfusion Injury by Scavenging ROS and Counteracting Cardiac Inflammation.

Adv Sci (Weinh)

January 2025

Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.

Precise and effective management of myocardial ischemia/reperfusion injury (MIRI) is still a formidable challenge in clinical practice. Additionally, real-time monitoring of drug aggregation in the MIRI region remains an open question. Herein, a drug delivery system, hesperadin and ICG assembled in PLGA-Se-Se-PEG-IMTP (HI@PSeP-IMTP), is designed to deliver hesperadin and ICG to the MIRI region for in vivo optical imaging tracking and to ameliorate MIRI.

View Article and Find Full Text PDF

LaSrMnO Perovskites for Oxygen Reduction in Zn-Air Batteries: Enhanced by Glucose Regulation.

ACS Appl Mater Interfaces

January 2025

School of Mechanical Science and Engineering, Northeast Petroleum University, 199 Fazhan Road, Daqing 163318, P. R. China.

The actual ORR catalytic activity of perovskite materials is significantly lower than the theoretical value due to their inherently low specific surface area and significant segregation of inactive oxygen ions on the surface. This study reports a sol-gel synthesis approach that employs glucose as a structural regulator to fabricate LaSrMnO (LSM) perovskites. Compared with the original LSM (12.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!