The urokinase-type plasminogen activator receptor (uPAR) is a glycosylphosphatidylinositol-anchored membrane protein with multiple functions. In the present study, we examined whether the uPAR plays any role in the regulation of glucose metabolism. The experiments were performed using male wild-type (uPAR) and uPAR knockout (uPAR) C57BL/6J mice. The blood glucose levels after the intraperitoneal injection of glucose were significantly decreased in uPAR mice compared with uPAR mice. On the other hand, there were no differences in the insulin secretion induced by glucose injection and the reactivity of insulin between uPAR and uPAR mice. The expression levels of glucose transporter 2 (GLUT2) in the liver and GLUT4 in the skeletal muscles from the uPAR mice were significantly increased compared with those of the uPAR mice. In addition, we found that the level of phosphorylation of AMP-activated protein kinase in skeletal muscles and myoblasts from the uPAR mice increased compared with those in uPAR mice. These data suggest that the increase in the GLUT2 and GLUT4 expression and the activation of AMP-activated protein kinase by uPAR deficiency enhances the glucose intake. These findings therefore provide new insights into the role of uPAR in the glucose metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1097/FJC.0b013e318209275dDOI Listing

Publication Analysis

Top Keywords

upar mice
28
upar
15
glucose metabolism
12
compared upar
12
urokinase-type plasminogen
8
plasminogen activator
8
activator receptor
8
plays role
8
glucose
8
upar upar
8

Similar Publications

Background: Fluorescence molecular imaging, a potent and non-invasive technique, has become indispensable in medicine for visualizing molecular processes. In surgical oncology, it aids treatment by allowing visualization of tumor cells during fluorescence-guided surgery (FGS). Targeting the urokinase plasminogen activator receptor (uPAR), overexpressed during tissue remodeling and inflammation, holds promise for advancing FGS by specifically highlighting tumors.

View Article and Find Full Text PDF

Three-finger proteins (TFPs), or Ly6/uPAR proteins, are characterized by the beta-structural LU domain containing three protruding "fingers" and stabilized by four conserved disulfide bonds. TFPs were initially characterized as snake alpha-neurotoxins, but later many studies showed their regulatory roles in different organisms. Despite a known expression of TFPs in vertebrates, they are poorly studied in other taxa.

View Article and Find Full Text PDF

Identifying cancer therapy resistance is a key time-saving tool for physicians. Part of chemotherapy resistance includes senescence, a persistent state without cell division or cell death. Chemically inducing senescence with the combination of trametinib and palbociclib (TP) yields several tumorigenic and prometastatic factors in pancreatic cancer models with many potential antibody-based targets.

View Article and Find Full Text PDF

EGFR-targeted therapies are efficacious, but toxicity is common and can be severe. Urokinase type plasminogen activator receptor (uPAR)-targeted drugs are only emerging, so neither their efficacy nor toxicity is fully established. Recombinant eBAT was created by combining cytokines EGF and uPA on the same single-chain molecule with truncated toxin.

View Article and Find Full Text PDF
Article Synopsis
  • - Coagulation factor XII (FXII) is linked to thrombosis and inflammation and is found in increased levels in diabetes and diabetic kidney disease (DKD), but its specific role in DKD was unclear until now.
  • - The study reveals that FXII is present in kidney tubular cells, correlating with kidney dysfunction in DKD patients; mice lacking FXII showed protection against kidney damage from high blood sugar.
  • - FXII promotes cell damage through a signaling pathway involving uPAR and integrin β1, leading to oxidative stress and cell aging; blocking these pathways may provide new diagnostic and treatment options for DKD and similar diseases.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!