MicroRNAs (miRs) play an important role in cell differentiation and maintenance of cell identity, but relatively little is known of their functional role in modulating human hematopoietic lineage differentiation. Human embryonic stem cells (hESCs) provide a model system to study early human hematopoiesis. We differentiated hESCs by embryoid body (EB) formation and compared the miR expression profile of undifferentiated hESCs to CD34(+) EB cells. miRs-126/126* were the most enriched of the 7 miRs that were up-regulated in CD34(+) cells, and their expression paralleled the kinetics of hematopoietic transcription factors RUNX1, SCL, and PU.1. To define the role of miRs-126/126* in hematopoiesis, we created hESCs overexpressing doxycycline-regulated miRs-126/126* and analyzed their hematopoietic differentiation. Induction of miRs-126/126* during both EB differentiation and colony formation reduced the number of erythroid colonies, suggesting an inhibitory role of miRs-126/126* in erythropoiesis. Protein tyrosine phosphatase, nonreceptor type 9 (PTPN9), a protein tyrosine phosphatase that is required for growth and expansion of erythroid cells, is one target of miR-126. PTPN9 restoration partially relieved the suppressed erythropoiesis caused by miRs-126/126*. Our results define an important function of miRs-126/126* in negative regulation of erythropoiesis, providing the first evidence for a role of miR in hematopoietic differentiation of hESCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3062325 | PMC |
http://dx.doi.org/10.1182/blood-2010-08-302711 | DOI Listing |
Tissue Eng Part C Methods
January 2025
CiRA Foundation, Research and Development Center, Osaka, Japan.
Mouse embryonic fibroblasts (MEFs) have been widely used as feeder cells in embryonic stem cell cultures because they can mimic the embryonic microenvironment. Milk fat globule-epidermal growth factor 8 (MFGE8) is expressed during mouse gonadal development, 10.5-13.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Ophthalmology, University of North Carolina, 130 Mason Farm Rd, Chapel Hill, NC 27517, USA.
Adeno-associated virus (AAV) inverted terminal repeats (ITRs) induce p53-dependent apoptosis in human embryonic stem cells (hESCs). To interrogate this phenomenon, a synthetic ITR (SynITR), harboring substitutions in putative p53 binding sites was generated and evaluated for vector production and gene delivery. Replication of SynITR flanked transgenic genome was similar compared to wild type (wt) ITR, with a modest increase in vector titers.
View Article and Find Full Text PDFCraniofacial development gives rise to the complex structures of the face and involves the interplay of diverse cell types. Despite its importance, our understanding of human-specific craniofacial developmental mechanisms and their genetic underpinnings remains limited. Here, we present a comprehensive single-nucleus RNA sequencing (snRNA-seq) atlas of human craniofacial development from craniofacial tissues of 24 embryos that span six key time points during the embryonic period (4-8 post-conception weeks).
View Article and Find Full Text PDFUnlabelled: During vertebrate development, the heart primarily arises from mesoderm, with crucial contributions from cardiac neural crest cells that migrate to the heart and form a variety of cardiovascular derivatives. Here, by integrating bulk and single cell RNA-seq with ATAC-seq, we identify a gene regulatory subcircuit specific to migratory cardiac crest cells composed of key transcription factors and . Notably, we show that cells expressing the canonical neural crest gene are essential for proper cardiac regeneration in adult zebrafish.
View Article and Find Full Text PDFPrimary cilia play a pivotal role in cellular signaling and development and disruptions in ciliary form and/or function leads to human ciliopathies. Here, we examine the role of , a key component of the intraflagellar transport-A complex, in mouse forebrain development using a null allele. Our findings reveal significant microcephaly in homozygous mutants is caused by disrupted neural progenitor proliferation and differentiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!