The 25 human bitter receptors and their respective genes (TAS2Rs) contain unusually high levels of allelic variation, which may influence response to bitter compounds in the food supply. Phenotypes based on the perceived bitterness of single bitter compounds were first linked to food preference over 50 years ago. The most studied phenotype is propylthiouracil bitterness, which is mediated primarily by the TAS2R38 gene and possibly others. In a laboratory-based study, we tested for associations between TAS2R variants and sensations, liking, or intake of bitter beverages among healthy adults who were primarily of European ancestry. A haploblock across TAS2R3, TAS2R4, and TAS2R5 explained some variability in the bitterness of espresso coffee. For grapefruit juice, variation at a TAS2R19 single nucleotide polymorphism (SNP) was associated with increased bitterness and decreased liking. An association between a TAS2R16 SNP and alcohol intake was identified, and the putative TAS2R38-alcohol relationship was confirmed, although these polymorphisms did not explain sensory or hedonic responses to sampled scotch whisky. In summary, TAS2R polymorphisms appear to influence the sensations, liking, or intake of common and nutritionally significant beverages. Studying perceptual and behavioral differences in vivo using real foods and beverages may potentially identify polymorphisms related to dietary behavior even in the absence of known ligands.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3038275 | PMC |
http://dx.doi.org/10.1093/chemse/bjq132 | DOI Listing |
Plant Biotechnol J
January 2025
Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China.
Phosphorus (P) is an essential yet frequently deficient plant nutrient. Optimizing P distribution and recycling between tissues is vital for improving P utilization efficiency (PUE). Yet, the mechanisms underlying the transport and re-translocation of P within plants remain unclear.
View Article and Find Full Text PDFSci China Life Sci
January 2025
National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
High temperature (HT) stress causes male sterility, leading to reduced upland cotton yield. Previously, we identified a key gene, Casein Kinase I (GhCKI), that negatively regulates male fertility in upland cotton under HT. However, conventional genetic manipulations of GhCKI would result in male sterility, hindering its utilization in breeding programs.
View Article and Find Full Text PDFImmunogenetics
January 2025
Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
T cells recognize peptides displayed on the surface of cells on MHC molecules. Genetic variation in MHC genes alters their peptide-binding repertoire and thus influences the potential immune response generated against pathogens. Both gorillas and chimpanzees show reduced diversity at their MHC class I A (MHC-A) locus compared to humans, which has been suggested to be the result of a pathogen-mediated selective sweep.
View Article and Find Full Text PDFBlood Adv
January 2025
Department of Internal Medicine, Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands.
Treatment options for the bleeding disorder von Willebrand disease type 2B (VWD2B) are insufficient and fail to address the negative effects of circulating mutant von Willebrand factor (VWF). The dominant-negative nature of VWD2B makes functionally defective VWF an interesting therapeutic target. Previous in vitro studies have demonstrated the feasibility of allele-selective silencing of mutant VWF using small interfering RNAs (siRNAs) targeting common single nucleotide polymorphisms (SNPs) in the human VWF gene, an approach that can be applied irrespective of the disease-causing VWF mutation.
View Article and Find Full Text PDFFront Parasitol
April 2024
Centre for Malaria Elimination, Institute of Tropical Medicine, Mount Kenya University, Thika, Kenya.
The Circumsporozoite Protein (PfCSP) has been used in developing the RTS,S, and R21 malaria vaccines. However, genetic polymorphisms within compromise the effectiveness of the vaccine. Thus, it is essential to continuously assess the genetic diversity of , especially when deploying it across different geographical regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!