We have investigated the replication patterns of the two chromosomes of the bacterium Vibrio cholerae grown in four different media. By combining flow cytometry and quantitative real-time PCR with computer simulations, we show that in rich media, V. cholerae cells grow with overlapping replication cycles of both the large chromosome (ChrI) and the small chromosome (ChrII). In Luria-Bertani (LB) medium, initiation occurs at four copies of the ChrI origin and two copies of the ChrII origin. Replication of ChrII was found to occur at the end of the ChrI replication period in all four growth conditions. Novel cell-sorting experiments with marker frequency analysis support these conclusions. Incubation with protein synthesis inhibitors indicated that the potential for initiation of replication of ChrII was present at the same time as that of ChrI, but was actively delayed until much of ChrI was replicated. Investigations of the localization of SeqA bound to new DNA at replication forks indicated that the forks were co-localized in pairs when cells grew without overlapping replication cycles and in higher-order structures during more rapid growth. The increased degree of fork organization during rapid growth may be a means by which correct segregation of daughter molecules is facilitated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/mic.0.045112-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!