Soluble extracellular polymeric substances (EPSs) cause membrane fouling in membrane bioreactors (MBRs), correlated with MBR sludge characteristics. Effects of F/M ratios on the evolution of soluble EPSs, fouling propensity of supernatants, and sludge metabolic activity were measured in this study in a two-period sequencing batch reactor (SBR). The experimental results show that fouling propensity was directly correlated with soluble-EPS concentration and composition. Sludge that had entirely lost active cells by long-term starvation released 64.4 ± 0.9 mg/L of humic acids, which caused a rapid increase in membrane resistance (40.67 ± 2.24 × 10(11) m(-1)) during fouling tests. During short-term starvation, induced by incubation at a normal to low F/M ratio of 0.05 d(-1), sludge can use previously secreted utilization-associated products (UAPs) to maintain endogenous respiration. Therefore, the strategies of accumulating sludge and prolonging sludge retention time in MBRs may create long-term starvation and promote membrane fouling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2010.11.093 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!