The effects of ethanol exposure on fetal lungs remain under investigation. Previously, we demonstrated that lambs exposed to ethanol during gestation had impaired expression of pulmonary surfactant protein A, a crucial component of lung immunity. In this study, we investigated the effects of in utero exposure to ethanol on maturation and immunity of the fetal lung. Pregnant ewes were surgically implanted with an abomasal cannula and administered 1g ethanol/kg (n=8) or water (n=8) during the last trimester of pregnancy. Lambs were delivered prematurely or naturally. Neonatal lungs were assessed for maturation markers (hypoxia-inducible factor-1α [HIF-1α], HIF-2α, HIF-3α, vascular endothelial growth factor-A [VEGF-A], VEGFR-1, VEGFR-2, glycogen, and lung protein levels) and immunity (cytokines and chemokines). Preterm animals exposed to ethanol had significantly reduced VEGF-A mRNA (P=.066) and protein levels, HIF-1α (P=.055), HIF-2α (P=.019), VEGFR-1 (P=.088), and VEGFR-2 (P=.067) mRNA levels but no changes in HIF-3α mRNA. No significant changes occurred in full-term animals exposed to ethanol. Glycogen levels were significantly higher in preterm animals exposed to ethanol (P=.006) but not in full-term animals. Ethanol exposure was associated with significantly lower lung protein levels in preterm (P=.03) but not full-term animals. Preterm animals exposed to ethanol had significantly reduced TNF-α (P=.05), IL-10 (P=.03), chemokine (C-C motif) ligand 5 (CCL5) (P=.017), and monocyte chemotactic protein-1 (MCP-1) (P=.0004) mRNA. In full-term animals exposed to ethanol, the immune alterations were either sustained (TNF-α, P=.009; IL-10, P=.03) or returned to near baseline levels (CCL5 and MCP-1). The ethanol-mediated alterations in fetal lung maturation and immunity may explain the increased incidence of respiratory infections in neonates exposed to ethanol in utero.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3184311PMC
http://dx.doi.org/10.1016/j.alcohol.2010.11.001DOI Listing

Publication Analysis

Top Keywords

exposed ethanol
28
animals exposed
20
full-term animals
16
maturation immunity
12
fetal lung
12
protein levels
12
preterm animals
12
ethanol
10
exposure ethanol
8
trimester pregnancy
8

Similar Publications

Mechanical loading plays a pivotal role in regulating bone anabolic processes. Understanding the optimal mechanical loading parameters for cellular responses is critical for advancing strategies in orthopedic bioreactor-based bone tissue engineering. This study developed a poly (sorbitol sebacate) (PSS) filmscaffold with a sorbitol-to-sebacic acid molar ratio of 1:4.

View Article and Find Full Text PDF

Sexual dimorphism in lung transcriptomic adaptations in fetal alcohol spectrum disorders.

Respir Res

January 2025

Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, 275 E Hancock St, Rm 195, Detroit, MI, 48201, USA.

Current fetal alcohol spectrum disorders (FASD) studies primarily focus on alcohol's actions on the fetal brain although respiratory infections are a leading cause of morbidity/mortality in newborns. The limited studies examining the pulmonary adaptations in FASD demonstrate decreased surfactant protein A and alveolar macrophage phagocytosis, impaired differentiation, and increased risk of Group B streptococcal pneumonia with no study examining sexual dimorphism in adaptations. We hypothesized that developmental alcohol exposure in pregnancy will lead to sexually dimorphic fetal lung morphological and immune adaptations.

View Article and Find Full Text PDF

Anticoagulant Activity of the Polysaccharide Fromgonad of Abalone Ino: The Role of Conjugate Protein.

Foods

December 2024

National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.

Few studies are concerned with the effect of the conjugat protein on the bioactivities of the abalone gonad polysaccharide (AGP). In this study, a series of treatments, including raw material (female and male) defatting, extraction temperature (25-121 °C), proteolysis, ultrafiltration, and ethanol precipitation, was conducted to investigate the role of the conjugate protein on AGP anticoagulant activity. All AGP extracts significantly prolonged activated partial thromboplastin time (APTT) and thrombin time (TT).

View Article and Find Full Text PDF

Alcohol consumption is believed to affect Alzheimer's disease (AD) risk, but the contributing mechanisms are not well understood. A potential mediator of the proposed alcohol-AD connection is autophagy, a degradation pathway that maintains organelle and protein homeostasis. Autophagy is regulated through the activity of Transcription factor EB (TFEB), which promotes lysosome and autophagy-related gene expression.

View Article and Find Full Text PDF
Article Synopsis
  • Acanthamoeba species are protozoa that can cause serious eye and CNS infections, and current treatments are often ineffective, especially in specific areas like the eye.
  • The study evaluates the effectiveness of ethanolic fruit extract of E. umbellata, silver nanoparticles derived from it, and lauric acid in killing Acanthamoeba trophozoites and protecting DNA from damage.
  • Results show that these treatments can significantly kill trophozoites and prevent DNA damage, suggesting potential new options for treating Acanthamoeba infections.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!