Purpose: To calculate the linear energy transfer (LET) distributions in patients undergoing proton therapy. These distributions can be used to identify areas of elevated or diminished biological effect. The location of such areas might be influenced in intensity-modulated proton therapy (IMPT) optimization.
Methods And Materials: Because Monte Carlo studies to investigate the LET distribution in patients have not been undertaken so far, the code is first validated with simulations in water. The code was used in five patients, for each of them three planning and delivery techniques were simulated: passive scattering, three-dimensional modulation IMPT (3D-IMPT), and distal edge tracking IMPT (DET-IMPT).
Results: The inclusion of secondary particles led to significant differences compared with analytical techniques. In addition, passive scattering and 3D-IMPT led to largely comparable LET distributions, whereas the DET-IMPT plans resulted in considerably increased LET values in normal tissues and critical structures. In the brainstem, dose-averaged LET values exceeding 5 keV/μm were observed in areas with significant dose (>70% of prescribed dose). In noncritical normal tissues, even values >8 keV/μm occurred.
Conclusion: This work demonstrates that active scanning offers the possibility of influencing the distribution of dose-averaged LET (i.e., the biological effect) without significantly altering the distribution of physical dose. On the basis of this finding, we propose a method to alter deliberately the LET distribution of a treatment plan in such a manner that the LET is maximized within certain target areas and minimized in normal tissues, while maintaining the prescribed target dose and dose constraints for organs at risk.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3094592 | PMC |
http://dx.doi.org/10.1016/j.ijrobp.2010.10.027 | DOI Listing |
JNCI Cancer Spectr
December 2024
Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States.
Background: Black women have a 40% higher breast cancer (BC) mortality rate than White women and are at a higher risk of acquiring cardiovascular disease. Proton therapy (PT) can be used to mitigate cardiac radiation exposure; however, PT remains a scarce resource in the United States. We report on the cardiovascular profiles of patients undergoing PT to determine the potential benefit of PT for Black women when compared to non-Black patients.
View Article and Find Full Text PDFChilds Nerv Syst
December 2024
Department Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India.
Introduction: Diffuse intrinsic pontine glioma (DIPG) in children comprises 80% of brainstem gliomas. In 2021, 5th edition of WHO CNS tumor classification defined H3K27M altered diffuse midline gliomas (DMGs) which replaced this entity. Lesion location precludes resection and the only current option available is radiotherapy.
View Article and Find Full Text PDFSci Rep
December 2024
Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
Aggressive breast cancers often fail or acquire resistance to radiotherapy. To develop new strategies to improve the outcome of aggressive breast cancer patients, we studied how PARP inhibition radiosensitizes breast cancer models to proton therapy, which is a radiotherapy modality that generates more DNA damage in the tumor than standard radiotherapy using photons. Two human BRCA1-mutated breast cancer cell lines and their isogenic BRCA1-recovered pairs were treated with a PARP inhibitor and irradiated with photons or protons.
View Article and Find Full Text PDFJ Palliat Med
December 2024
Department of Radiation Oncology, Saitama Medical center, Saitama, Japan.
Utility values of responders and nonresponders are essential inputs in cost-effectiveness studies of radiation therapy for painful bone metastases but, to our knowledge, they have not been reported separately. We sought to determine the utility values of responders and nonresponders using data from a prospective observational study on bone metastases. The original prospective observational study was conducted at 26 centers in Japan.
View Article and Find Full Text PDFPhys Med Biol
December 2024
Paul Scherrer Institute, Center for Proton Therapy, Villigen, Switzerland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!