Objectives: We sought to determine whether contrast-enhanced ultrasound (CEU) microangiography with maximum intensity projection (MIP) processing could temporally evaluate proliferation of the vasa vasorum (VV) in a model of mural hemorrhage.

Background: Expansion of the VV and plaque neovascularization contributes to plaque growth and instability and may be triggered by a variety of stimuli, including vascular hemorrhage. However, quantitative in vivo methods for temporal assessment of VV remodeling are lacking.

Methods: In 24 rabbits fed a high-fat diet, either autologous whole blood or saline was percutaneously injected into the media-adventitia of the femoral artery using ultrahigh-frequency ultrasound guidance. Functional VV density at the injection site and contralateral control artery was assessed 1, 2, and 6 weeks after injection with CEU imaging with MIP processing. In vitro studies with renathane microtubes were also performed to validate linear density measurement with CEU and MIP processing.

Results: In vitro studies demonstrated that MIP processing of CEU data reflected the relative linear density of vessels in a manner that was relatively independent of contrast concentration or microtube flow rate. On CEU with MIP, there was a 3-fold increase in femoral artery VV microvascular density at 1 and 2 weeks after blood injection (p < 0.01 vs. contralateral control), whereas VV density increased minimally after saline injection. At 6 weeks, VV vascular density decreased in blood-treated vessels and was not different from saline-injected or contralateral control vessels.

Conclusions: CEU with MIP processing can provide quantitative data on temporal changes in the functional density of the VV. This method may be useful for evaluating high-risk features of plaque neovascularization or response to therapies aimed at plaque neovessels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3341849PMC
http://dx.doi.org/10.1016/j.jcmg.2010.08.017DOI Listing

Publication Analysis

Top Keywords

mip processing
16
functional density
12
contralateral control
12
ceu mip
12
density
8
vasa vasorum
8
maximum intensity
8
intensity projection
8
plaque neovascularization
8
femoral artery
8

Similar Publications

The practical implementation of terahertz (THz) imaging and spectroscopic systems in real operational conditions requires them to be of a compact size, to have enhanced functionality, and to be user-friendly. This work demonstrates the single-sided integration of Fresnel-zone-plate-based optical elements with InGaAs bow-tie diodes directly on a semiconductor chip. Numerical simulations were conducted to optimize the Fresnel zone plate's focal length and the InP substrate's thickness to achieve constructive interference at 600 GHz, room-temperature operation and achieve a sensitivity more than an order of magnitude higher-up to 24.

View Article and Find Full Text PDF

This study explores the low-temperature synthesis of graphene using plasma-enhanced chemical vapor deposition (PECVD), emphasizing the optimization of process parameters to achieve controlled growth of pristine and hydrogenated graphene. Graphene films were synthesized at temperatures ranging from 700 °C to as low as 400 °C by varying methane (25-100 sccm) and hydrogen (25-100 sccm) gas flow rates under 10-20 mBar pressures. Raman spectroscopy revealed structural transitions: pristine graphene grown at 700 °C exhibited strong 2D peaks with an I(2D)/I(G) ratio > 2, while hydrogenated graphene synthesized at 500 °C showed increased defect density with an I(D)/I(G) ratio of ~1.

View Article and Find Full Text PDF

() is the primary agent of bovine tuberculosis (TB) in Mediterranean buffalo, which has a negative economic impact on buffalo herds. Improving TB diagnostic performance in this species represents a key step to eradicate efficiently this disease. We have recently shown the utility of the IFN-γ assay in the diagnosis of infection in Mediterranean buffaloes (), but other cytokines might be useful immunological biomarkers of this infection.

View Article and Find Full Text PDF

Chitosan, as a natural and environmentally friendly material, has attracted significant attention in the field of water treatment. In this study, a Chitosan/poly (dimethyl diallyl ammonium chloride-co-acrylamide) composite hydrogel (CPDA hydrogel) featuring a semi-interpenetrating network structure was synthesized via free radical copolymerization for the removal of the anionic dye Congo Red (CR) from wastewater. SEM-EDS, FTIR, XPS, TG, Zeta potential, and mercury intrusion porosimetry (MIP) were employed to analyze the physical and chemical changes in the hydrogel before and after adsorption.

View Article and Find Full Text PDF

Dual-template epitope imprinted nanoparticles for anti-glycolytic tumor-targeted treatment.

J Colloid Interface Sci

December 2024

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China; National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. Electronic address:

Glycolysis provides tumors with abundant nutrients through glucose (Glu) metabolism. As a therapeutic target, precise targeting and effective inhibition of the glycolysis process remains a major challenge in anti-metabolic therapy. In this study, a novel dual-template molecularly imprinted polymer (D-MIP), capable of specifically recognizing glucose transporter member 1 (GLUT1) and hexokinase-2 (HK2) was prepared for anti-glycolytic tumor therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!