Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A mathematical model of bacterial competition for a single growth-limiting substrate in serial transfer culture is formulated. Each bacterial strain is characterized by a growth response function, e.g. Monod function determined by a maximum growth rate and half-saturation nutrient concentration, and the length of its lag phase following the dilution event. The goal of our study is to understand what factors determine an organisms fitness or competitive ability in serial transfer culture. A motivating question is: how many strains can coexist in serial transfer culture? Unlike competition in the chemostat, coexistence of two strains can occur in serial transfer culture. Numerical simulations suggest that more than two may coexist.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mbs.2010.12.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!