Detection of 100% oxygen induced changes in retina using magnetic resonance imaging: a human study.

Chin Med J (Engl)

Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.

Published: November 2010

Background: Inner retinal oxygenation response (ΔPO(2)) is a worldwide study focus. However, the relevant reports on its radiological measurements are limited. In this study, magnetic resonance imaging (MRI), employing T1 weighted image (T1WI), was used to detect changes in ΔPO(2) following 100% oxygen inhalation in human subjects.

Methods: MRI was performed on a 1.5-T GE scanner system. After obtaining ophthalmologic data, eleven healthy individuals were given room air and 100% oxygen inhalation in order with different intervals. The MRI T1WI data were collected for 50 minutes. Data were analyzed with NIH IMAGE software.

Results: ΔPO(2) was not panretinally uniform, and changes in oxygenation response were spatially inhomogeneous. During the initial phase (before 5 minutes) of 100% oxygen inhalation, preretinal vitreous water signals in the region of papilla optica increased rapidly. On the contrary, in other regions signals declined. In a later period (35 minutes), ΔPO(2) was panretinally fluctuated and increased slowly and attained homeostasis. After hyperoxia (45 minutes), delayed-enhancement of preretinal vitreous water signals in regions other than the papilla optica occurred, and then dropped down. There was no significant difference (P > 0.05) at any consecutive time point during and after hyperoixa.

Conclusions: These results reveal that hyperoxia can induce region-specific signal changes in preretinal vitreous water. Regulatory activity of the retinal vessel network may be the mechanism during 100% oxygen inhalation. Moreover, MRI is a valuable tool for investigating ΔPO(2) and exploring the mechanism of retinal oxygenation response physiologically or pathologically in vivo.

Download full-text PDF

Source

Publication Analysis

Top Keywords

100% oxygen
20
oxygen inhalation
16
oxygenation response
12
preretinal vitreous
12
vitreous water
12
magnetic resonance
8
resonance imaging
8
retinal oxygenation
8
Δpo2 panretinally
8
water signals
8

Similar Publications

The construction of coupled electrolysis systems utilizing renewable energy sources for electrocatalytic nitrate reduction and sulfion oxidation reactions (NORR and SOR), is considered a promising approach for environmental remediation, ammonia production, and sulfur recovery. Here, a simple chemical dealloying method is reported to fabricate a hierarchical porous multi-metallic spinel MFeO (M═Ni, Co, Fe, Mn) dual-functional electrocatalysts consisting of Mn-doped porous NiFeO/CoFeO heterostructure networks and Ni/Co/Mn co-doped FeO nanosheet networks. The excellent NORR with high NH Faradaic efficiency of 95.

View Article and Find Full Text PDF

Background: Doxorubicin (DOX) is a widely used anticancer drug; However, its nephrotoxicity limits its therapeutic efficacy. This study investigates the protective effects of Perilla Alcohol (PA) against DOX-induced nephrotic syndrome (NS), focusing on its antioxidant and anti-inflammatory properties through the nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways.

Methods: A DOX-induced nephrotic syndrome (NS) rat model and a DOX-treated Mouse Podocyte Cell line 5 (MPC5) cell model were used to evaluate the renal protective effects of PA.

View Article and Find Full Text PDF

Photoexcited Electro-Driven Reactive Oxygen Species Channeling for Precise Extraction of Biomarker Information from Tumor Interstitial Fluid.

Small

January 2025

Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China.

Direct electrochemical detection of miRNA biomarkers in tumor tissue interstitial fluid (TIF) holds great promise for adjuvant therapy for tumors in the perioperative period, yet is limited by background interference and weak signal. Herein, a wash-free and separation-free miRNA biosensor based on photoexcited electro-driven reactive oxygen channeling analysis (LEOCA) is developed to solve the high-fidelity detection in physiological samples. In the presence of miRNA, nanoacceptors (ultrasmall-size polydopamine, uPDA) are responsively assembled on the surface of nanodonors (zirconium metal-organic framework, ZrMOF) to form core-satellite aggregates.

View Article and Find Full Text PDF

Non-tuberculous mycobacterial skin infection lead to complex and lengthy treatment cycles. Antimicrobial photodynamic therapy (aPDT) is an emerging promising approach for treating infections. This study aims to assess the effects of aPDT using curcumin as a photosensitizer (PS) on non-tuberculous mycobacteria, Mycobacterium abscessus, a subtype that has become common in dermatology in recent years.

View Article and Find Full Text PDF

The oxygenases are essential in the bioremediation of xenobiotic pollutants. To overcome cultivability constraints, this study aims to identify new potential extradiol dioxygenases using the functional metagenomics approach. RW1-4CC, a novel catechol 2,3-dioxygenase, was isolated using functional metagenomics approach, expressed in a heterologous system, and characterized thoroughly using state-of-the-art techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!