Objective: To describe the distribution of road traffic injuries through hospital based National Injury Surveillance System(NISS).
Methods: Data of road traffic injuries was descriptively analyzed from Chinese NISS from 2006 to 2008.
Results: In 2006 - 2008, road traffic injury was the second leading cause from NISS among attendants in ERs or clinics of the hospitals, with males (64.63%, 64.07%, 64.38%) more than females (35.37%, 35.93%, 35.62%). People aged 30 - 44 (36.04%, 34.82%, 34.28%), 15 - 29 (30.74%, 31.57%, 30.13%), 45 - 64 (20.28%, 20.70%, 22.80%) years were seen more than other age groups. The majority of road traffic injuries were unintentional (98.34%, 99.07%, 99.07%), and mostly injured in head (35.21%, 33.74%, 35.77%) and lower limbs (24.08%, 24.54%, 23.95%) which mainly as bruise (56.47%, 57.92%, 58.89%) and fractures (17.70%, 15.84%, 15.88%). The severities of injuries were mainly minor ones (63.69%, 67.24%, 65.68%), and mostly went home right after treatments (59.43%, 63.76%, 62.80%).
Conclusion: The distribution of road traffic injuries from NISS kept stable from 2006 to 2008. Young and middle aged men were the focus population for road traffic injuries intervention. Further improvement of NISS, multi-sectional collaboration-based advocacies and education programs as well as the enforcement of road safety law seemed the good practices for road traffic injury prevention.
Download full-text PDF |
Source |
---|
Accid Anal Prev
January 2025
Western Australian Centre for Road Safety Research, School of Psychological Science, The University of Western Australia Perth Western Australia Australia.
Estimating reliable causal estimates of road safety interventions is challenging, with a number of these challenges addressable through analysis choices. At a minimum, developing reliable crash modification factors (CMFs) needs to address three critical confounding factors, i.e.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Civil Engineering, The University of Mississippi, University, MS 38677, USA.
The focus of this study is to investigate the underexplored operational effects of disengagements on the speed of an automated shuttle, providing novel insights into their disruptive impact on performance metrics. For this purpose, global positioning system data, disengagement records, weather reports, and roadway geometry data from an automated shuttle pilot program, from July to December 2023, at the University of North Carolina in Charlotte, were collected. The automated shuttle uses sensors for localization, navigation, and obstacle detection.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy.
In recent years, the growing number of vehicles on the road have exacerbated issues related to safety and traffic congestion. However, the advent of the Internet of Vehicles (IoV) holds the potential to transform mobility, enhance traffic management and safety, and create smarter, more interconnected road networks. This paper addresses key road safety concerns, focusing on driver condition detection, vehicle monitoring, and traffic and road management.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Netcom Engineering S.p.A., Via Nuova Poggioreale, Centro Polifunzionale, Tower 7, 5th Floor, 80143 Naples, Italy.
This paper explores the development and testing of two Internet of Things (IoT) applications designed to leverage Vehicle-to-Infrastructure (V2I) communication for managing intelligent intersections. The first scenario focuses on enabling the rapid and safe passage of emergency vehicles through intersections by notifying approaching drivers via a mobile application. The second scenario enhances pedestrian safety by alerting drivers, through the same application, about the presence of pedestrians detected at crosswalks by a traffic sensor equipped with neural network capabilities.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Electronics and Electrical Engineering, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
Traditional Vision-and-Language Navigation (VLN) tasks require an agent to navigate static environments using natural language instructions. However, real-world road conditions such as vehicle movements, traffic signal fluctuations, pedestrian activity, and weather variations are dynamic and continually changing. These factors significantly impact an agent's decision-making ability, underscoring the limitations of current VLN models, which do not accurately reflect the complexities of real-world navigation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!