Objective: TSG-6 (the product of tumor necrosis factor [TNF]-stimulated gene 6) has a potent inhibitory effect on RANKL-mediated bone erosion. The aim of this study was to compare the activity of TSG-6 with that of osteoprotegerin (OPG) and to investigate its role as an autocrine modulator of cytokine-mediated osteoclast formation/activation. We also determined TSG-6 expression in inflammatory joint disease.

Methods: The effects of TSG-6, OPG, and the inflammation mediators TNFα, interleukin-1 (IL-1), and IL-6 on the formation of osteoclasts from peripheral blood mononuclear cells and synovial fluid (SF) macrophages were determined by tartrate-resistant acid phosphatase staining. Lacunar resorption and filamentous actin ring formation were measured as indicators of osteoclast activity. The amount of TSG-6 in culture media or SF was quantified by enzyme-linked immunosorbent assay, and expression of TSG-6 in synovial tissue was assessed by immunohistochemistry.

Results: TSG-6 acted in synergy with OPG to inhibit RANKL-mediated bone resorption and was produced by osteoclast precursors and mature osteoclasts in response to TNFα, IL-1, and IL-6. Expression of TSG-6 correlated with inhibition of lacunar resorption; this effect was ameliorated by an anti-TSG-6 antibody. The level of TSG-6 protein was determined in SF from patients with various arthritides; it was highest in patients with inflammatory conditions such as rheumatoid arthritis, in which it correlated with the amount of TSG-6 immunostaining in the synovium. TSG-6 inhibited the activation but not the formation of osteoclasts from SF macrophages.

Conclusion: In the presence of inflammatory cytokines, osteoclasts produced TSG-6 at concentrations that are sufficient to inhibit lacunar resorption. This may represent an autocrine mechanism to limit the degree of bone erosion during joint inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/art.30201DOI Listing

Publication Analysis

Top Keywords

tsg-6
13
lacunar resorption
12
osteoclast activity
8
autocrine mechanism
8
rankl-mediated bone
8
bone erosion
8
il-1 il-6
8
formation osteoclasts
8
amount tsg-6
8
expression tsg-6
8

Similar Publications

Tumor necrosis factor-stimulated gene-6 inhibits endoplasmic reticulum stress in the ischemic mouse kidney.

iScience

December 2024

Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.

Kidney tissue injury in renal artery stenosis (RAS) involves inflammation, endoplasmic reticulum stress (ERS), and mitochondria damage. Tumor necrosis factor-stimulated gene-6 (TSG-6), an endogenous reparative molecule, may decrease ERS and improve renal function. To assess its impact on the stenotic murine kidney, we injected TSG-6 or vehicle for two weeks in mice with RAS.

View Article and Find Full Text PDF

Background: Although osteoarthritis (OA) is the most prevalent form of arthritis, there is still no effective treatment capable of combining immunomodulatory effects with cartilage repair. Extracellular vesicles (EVs) represent a promising new generation of cell-free therapies for OA. Blood-derived products, including plasma, are an easily available and abundant source of EVs with anti-inflammatory and regenerative properties.

View Article and Find Full Text PDF
Article Synopsis
  • Viral lower respiratory tract infection (vLRTI) significantly impacts global child health, prompting research into the host immune responses using proteomics for better understanding and diagnosis.
  • The study analyzed 1,305 proteins from tracheal aspirate and plasma of 62 critically ill children, finding 200 differentially expressed proteins that reveal key immune responses, with a robust nine-protein TA classifier showing high diagnostic accuracy (AUC of 0.96).
  • It also highlighted the limited correlation between tracheal aspirate and plasma proteins and examined how viral load and bacterial co-infections influence immune signaling pathways.
View Article and Find Full Text PDF

A consistent feature of lung injury is a rapid and sustained accumulation of hyaluronan (HA). The rodent gut-dwelling nematode (Nb) induces tissue damage as it migrates through the lungs. Type 2 immune responses are essential for the repair of the lungs, hence Nb infection is a well-established model to study immune-mediated lung repair.

View Article and Find Full Text PDF

Introduction: Mesenchymal stromal cells (MSCs) can modulate immune responses and suppress inflammation in autoimmune diseases. Although their safety has been established in clinical trials, the efficacy of MSCs is inconsistent due to variability in potency among different preparations and limited specificity in targeting mechanisms driving autoimmune diseases.

Methods: We utilized High-Dimensional Design of Experiments methodology to identify factor combinations that modulate gene expression by MSCs to mitigate inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!