Citrin deficiency, aetiologically linked to mutations of SLC25A13 gene, has two clinical phenotypes, namely adult-onset type II citrullinaemia (CTLN2) and neonatal/infantile intrahepatic cholestasis, caused by citrin deficiency (NICCD). Malaysian patients with NICCD, especially of Malay and East Malaysian indigenous descent, have never been reported in the literature. We present the clinical features, biochemical findings and results of molecular analysis in 11 Malaysian children with NICCD. In this case series, all patients manifested prolonged cholestatic jaundice and elevated citrulline levels. The other more variable features included failure to thrive, bleeding diathesis, hypoproteinaemia, abnormal liver enzymes, prolonged coagulation profile, hyperammonaemia, hypergalactosaemia, multiple aminoacidaemia, elevated α-feto protein and urinary orotic acid as well as liver biopsies showing hepatitis and steatosis. DNA analysis of SLC25A13 revealed combinations of 851del4(Ex9), IVS16ins3kb and 1638ins23. Most of our patients recovered completely by the age of 22 months. However, one patient had ongoing symptoms at the time of reporting and one had died of liver failure. Since a small percentage of children with NICCD will develop CTLN2 and the mechanisms leading to this is yet to be defined, ongoing health surveillance into adulthood is essential.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10545-010-9248-6 | DOI Listing |
Citrin Deficiency (CD) is caused by inactivation of SLC25A13, a mitochondrial membrane protein required to move electrons from cytosolic NADH to the mitochondrial matrix in hepatocytes. People with CD do not like sweets. We discovered that SLC25A13 loss causes accumulation of glycerol-3-phosphate (G3P), which activates carbohydrate response element binding protein (ChREBP) to transcribe FGF21, which acts in the brain to restrain intake of sweets and alcohol, and to transcribe key genes of lipogenesis.
View Article and Find Full Text PDFClin Exp Pediatr
November 2024
Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.
Background: Citrin deficiency is a rare metabolic disorder prevalent in East and Southeast Asia that affects liver or neurological function throughout various life stages. While early diagnosis and dietary management can improve prognosis for infant onset disease, data on long-term neurocognitive outcomes is scarce.
Purpose: This study aimed to clarify whether transient metabolic disturbances during early childhood have a lasting effect on the neurocognitive function of individuals with citrin deficiency.
Cureus
November 2024
Department of Internal Medicine, Wrexham Maelor Hospital, Wrexham, GBR.
Hyperammonemia is a serious metabolic condition marked by elevated ammonia levels in the blood, leading to neurological damage and systemic complications if untreated. While often associated with liver dysfunction, inborn metabolic errors such as fatty acid oxidation defects, pyruvate metabolism disorders, urea cycle disorders (UCDs), urea splitting bacterial infections, hemato-oncological disorders, and portosystemic shunts are less commonly recognized but significant causes, particularly outside neonatal populations. These metabolic errors, due to partial enzyme deficiencies, may present later in life with atypical symptoms.
View Article and Find Full Text PDFJ Inherit Metab Dis
January 2025
Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
Citrin belongs to the SLC25 transport protein family found mostly in inner mitochondrial membranes. The family prototype, the ADP-ATP carrier, delivers ATP made inside mitochondria to the cellular cytoplasm and returns ADP to the mitochondrion for resynthesis of ATP. In pre-genomic 1981, I noticed that the protein sequence of the bovine ADP-ATP carrier consists of three related sequences, each containing two transmembrane α-helices traveling in opposite senses.
View Article and Find Full Text PDFBiochemistry (Mosc)
October 2024
LiT Biosciences, Spokane, WA, 99202-5029, USA. ARRAY(0x5d17383a0090).
A large literature exists on the biochemistry, chemistry, metabolism, and clinical importance of the α-keto acid analogues of many amino acids. However, although glutamine is the most abundant amino acid in human tissues, and transamination of glutamine to its α-keto acid analogue (α-ketoglutaramate; KGM) was described more than seventy years ago, little information is available on the biological importance of KGM. Herein, we summarize the metabolic importance of KGM as an intermediate in the glutamine transaminase - ω-amidase (GTωA) pathway for the conversion of glutamine to anaplerotic α-ketoglutarate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!