Five genes encoded by Banana bunchy top virus (BBTV) originating from Pakistan were expressed in Nicotiana benthamiana using a Potato virus X (PVX) vector. Expression of the master replication-associated protein (mRep) and movement protein (MP) resulted in necrotic cell death of inoculated tissues, as well as leaf curling and necrosis along the veins in newly emerging leaves. The systemic necrosis induced by the expression of MP was discolored (dark) in comparison to that induced by mRep. Expression of the cell-cycle link protein (Clink), the coat protein (CP), and the nuclear shuttle protein from the PVX vector induced somewhat milder symptoms, consisting of mild leaf curling and mosaic, although expression of the CP caused a necrotic response in inoculated leaf. The accumulation of viral RNA was enhanced by MP, Clink, and CP. Of the five BBTV-encoded gene products two, the MP and Clink, stabilized GFP-specific mRNA and reduced GFP-specific small interfering RNA in N. benthamiana line 16c when expressed under the control of the 35S promoter and co-inoculated with a construct for the expression of GFP hairpin RNA construct. These results identified MP and Clink as suppressors of RNA silencing. Taken together the ability of MP to induce severe symptoms in plants and suppress RNA silencing implicates this product as a major pathogenicity determinant of BBTV.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11262-010-0559-3 | DOI Listing |
PLoS Biol
January 2025
Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America.
RNA interference (RNAi) mediates antiviral defense in many eukaryotes. Caenorhabditis elegans mutants that disable RNAi are more sensitive to viral infection. Many mutants that enhance RNAi have also been identified; these mutations may reveal genes that are normally down-regulated in antiviral defense.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
January 2025
Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
Purpose: Growing evidence suggests that the tyrosine phosphatase SHP2 is pivotal for tumor progression. Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer, characterized by its high recurrence rate, aggressive metastasis, and resistance to chemotherapy. Understanding the mechanisms of tumorigenesis and the underlying molecular pathways in TNBC could aid in identifying new therapeutic targets.
View Article and Find Full Text PDFJ Cell Mol Med
February 2025
Department of Neurobiology, Key Laboratory of Molecular Neurobiology of the Ministry of Education, Naval Medical University, Shanghai, China.
Myelin is the key structure for high-speed information transmission and is formed by oligodendrocytes (OLs) which are differentiated from oligodendrocyte precursor cells (OPCs) in the central nervous system. Lipid is the main component of myelin and the role of lipid metabolism-related molecules in myelination attach increasing attention. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) mediates the conversion of lysophosphatidylcholine (LPC) to phosphatidylcholine (PC), and its role in myelination draws our interest as LPC is a classical demyelination inducer and PC is a major component of myelin.
View Article and Find Full Text PDFFront Genet
January 2025
Department of General Surgery, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China.
Background: Neoadjuvant, endocrine, and targeted therapies have significantly improved the prognosis of breast cancer (BC). However, due to the high heterogeneity of cancer, some patients cannot benefit from existing treatments. Increasing evidence suggests that amino acids and their metabolites can alter the tumor malignant behavior through reshaping tumor microenvironment and regulation of immune cell function.
View Article and Find Full Text PDFFront Immunol
January 2025
Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China.
Background: Shell and pearl formation in bivalves is a sophisticated biomineralization process that encompasses immunological and mineralization aspects, particularly during shell repair and the initial stages of pearl cultivation when a nucleus is inserted. Here, we describe a novel C-type lectin, HcLec1, isolated and characterized from the freshwater pearl mussel Lea.
Methods: Immune challenge, RNA interference (RNAi) experiments, ELISA, and antibacterial assays were employed to investigate the role of HcLec1 in innate immunity.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!