Anion order in perovskite oxynitrides.

Nat Chem

Centre for Science at Extreme Conditions and School of Chemistry, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3JZ, UK.

Published: January 2011

Transition-metal oxynitrides with perovskite-type structures are an emerging class of materials with optical, photocatalytic, dielectric and magnetoresistive properties that may be sensitive to oxide-nitride order, but the anion-ordering principles were unclear. Here we report an investigation of the representative compounds SrMO(2)N (M = Nb, Ta) using neutron and electron diffraction. This revealed a robust 1O/2(O(0.5)N(0.5)) partial anion order (up to at least 750 °C in the apparently cubic high-temperature phases) that directs the rotations of MO(4)N(2) octahedra in the room-temperature superstructure. The anion distribution is consistent with local cis-ordering of the two nitrides in each octahedron driven by covalency, which results in disordered zigzag M-N chains in planes within the perovskite lattice. Local structures for the full range of oxynitride perovskites are predicted and a future challenge is to tune properties by controlling the order and dimensionality of the anion chains and networks.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nchem.908DOI Listing

Publication Analysis

Top Keywords

anion order
8
anion
4
order perovskite
4
perovskite oxynitrides
4
oxynitrides transition-metal
4
transition-metal oxynitrides
4
oxynitrides perovskite-type
4
perovskite-type structures
4
structures emerging
4
emerging class
4

Similar Publications

Unlabelled: The presence of bromate in water poses a significant health risk. In order to effectively eliminate bromate from water, this study synthesized a series of ternary Zn-Ni-Al layered double hydroxides with varying Zn/Ni/Al atomic ratios using a co-precipitation method. The adsorbents were characterized using various techniques including XRD, Fourier transform infrared spectroscopy, and N adsorption-desorption isotherms.

View Article and Find Full Text PDF

The local structure plays a crucial role in oxygen redox reactions, which boosts the capacity of layered oxide cathodes for sodium-ion batteries. While studies on local structural ordering have primarily focused on the intra-layer ordering, there has been limited research on the inter-layer stacking for the layered cathode materials for sodium-ion batteries. In this work, the impact of the intra-layer and inter-layer local structural regulation on anionic kinetics and the structure stability are explored through experimental analysis and theoretical calculations.

View Article and Find Full Text PDF

Protamine protects against vancomycin-induced kidney injury.

Antimicrob Agents Chemother

January 2025

Department of Pharmacy Practice, College of Pharmacy, Midwestern University, Downers Grove, Illinois, USA.

Vancomycin causes kidney injury by accumulating in the proximal tubule, likely mediated by megalin uptake. Protamine is a putative megalin inhibitor that shares binding sites with heparin and is approved for the treatment of heparin overdose. We employed a well-characterized Sprague-Dawley rat model to assess kidney injury and function in animals that received vancomycin, protamine alone, or vancomycin plus protamine over 5 days.

View Article and Find Full Text PDF

Proton-electron mixed conductors (PEMCs) are an essential component for potential applications in hydrogen separation and energy conversion devices. However, the exploration of PEMCs with excellent mixed conduction, which is quantified by the ambipolar conductivity, σ = σσ/(σ + σ) (σ: electronic conductivity; σ: proton conductivity), is still a great challenge, largely due to the lack of structural characterization of both conducting mechanisms. In this study, we prepared a molecule-based proton-electron mixed-conducting cation radical salt, (ET)[Pt(pop)(Hpop)]·PhCN (ET: bis(ethylenedithio)tetrathiafulvalene, pop: PHO), by electrocrystallization.

View Article and Find Full Text PDF

2D Raman-THz spectroscopy of imidazolium-based ionic liquids.

J Chem Phys

January 2025

Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.

An investigation of the low-frequency (i.e., less than 5 THz), inter-molecular dynamics of three imidazolium-based ionic liquids-1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C4mim][NTf2]), 1-butyl-3-methylimidazolium dicyanamide ([C4mim][DCA]), and 1-ethyl-3-methylimidazolium dicyanamide ([C2mim][DCA])-is presented using two-dimensional (2D) Raman-THz spectroscopy combined with molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!