Highly efficient photocatalytic oxygenation reactions using water as an oxygen source.

Nat Chem

Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, SORST, Japan Science and Technology Agency, Suita, Osaka 565-0871, Japan.

Published: January 2011

The effective utilization of solar energy requires photocatalytic reactions with high quantum efficiency. Water is the most abundant reactant that can be used as an oxygen source in efficient photocatalytic reactions, just as nature uses water in an oxygenic photosynthesis. We report that photocatalytic oxygenation of organic substrates such as sodium p-styrene sulfonate occurs with nearly 100% quantum efficiency using manganese(III) porphyrins as an oxygenation catalyst, [Ru(II)(bpy)(3)](2+) (bpy = 2,2'-bipyridine) as a photosensitized electron-transfer catalyst, [Co(III)(NH(3))(5)Cl](2+) as a low-cost and weak one-electron oxidant, and water as an oxygen source in a phosphate buffer solution (pH 7.4). A high-valent manganese-oxo porphyrin is proposed as an active oxidant that effects the oxygenation reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nchem.905DOI Listing

Publication Analysis

Top Keywords

oxygen source
12
efficient photocatalytic
8
photocatalytic oxygenation
8
oxygenation reactions
8
water oxygen
8
photocatalytic reactions
8
quantum efficiency
8
highly efficient
4
photocatalytic
4
oxygenation
4

Similar Publications

Anaplastic thyroid carcinoma is one of the highly fatal cancers and poses a serious threat to human health. Ferroptosis has been widely studied and proved to have an important role in tumor suppression, providing new avenues for cancer therapy; glutathione peroxidase 4(GPX4) and selenoprotein thioredoxin reductase(TXNRD1) are important regulatory targets in ferroptosis.Warburg effect is one of the important energy sources for cancer hypermetabolism, and pyruvate kinase isoenzyme 2 (PKM2) is a key metabolism enzyme that is important in this effect.

View Article and Find Full Text PDF

CFD simulation of turbulent mass transfer of HS and O in a stirring tank.

Water Sci Technol

January 2025

Chair of Water Resources Management and Modeling of Hydrosystems, Technische Universität Berlin, Gustav-Meyer-Allee 25, Berlin 13355, Germany.

This study explores the computational fluid dynamics (CFD) simulation of oxygen (O) and hydrogen sulfide (HS) mass transfer in a highly turbulent stirring tank. Using the open-source software OpenFOAM, we extended three-dimensional two-phase flow solvers with a rotating mesh feature to model the mass transfer processes between the water and air phases. The accuracy of these simulations was validated against experimental data, demonstrating a strong agreement in the mass transfer rates of HS and O.

View Article and Find Full Text PDF

Context: Extubation failure (EF) is common in preterm neonates and may be associated with adverse outcomes.

Objective: To systematically review and meta-analyze the existing literature on predictors and outcomes of EF in preterm neonates.

Data Sources: MEDLINE, Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Embase (OvidSP), CINAHL (EBSCOHost), and Cochrane Library (Wiley) from 1995 onward.

View Article and Find Full Text PDF

Screening and isolation of polyethylene microplastic degrading bacteria from mangrove sediments in southern China.

Sci Total Environ

January 2025

College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China. Electronic address:

Mangrove sediments in southern China are a large reservoir for microplastics (MPs). In particular, polyethylene microplastics (PE-MPs) are environmentally toxic and have accumulated in large quantities in these sediments, posing a potential threat to the overall mangrove and the organisms that inhabit it. We screened sediments from 5 mangrove sites and identified a potential source of PE-MP degrading bacteria.

View Article and Find Full Text PDF

Advancements in iron-based photocatalytic degradation for antibiotics and dyes.

J Environ Manage

January 2025

School of Resources and Environmental Engineering, Shanghai Polytechnic University, No. 2360 Jinhai Road, Shanghai, 201209, PR China.

The accelerated growth of the economy and advancements in medical technology have led to the discharge of a diverse range of organic pollutants into water sources. Recent investigations into water treatment have demonstrated the potential for integrating photocatalysis with techniques such as photocatalytic persulfate activation and the Photo-Fenton process for more efficient wastewater management. Iron-based photocatalysts responsive to visible light offer several advantages, including non-toxicity, safety, affordability, and excellent chemical and optical properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!