NKG2D ligands link the innate and adapative immune response by activating the receptors expressed on effector cells of both the innate (NK) and adaptive immune systems (CD8(+) T cells). In this study, we explored the potential therapeutic utility of this intersection by fusing the murine NKG2D ligand Rae-1β to the 3' end of an anti-HER2 IgG3 antibody containing an intact Fc domain (anti-HER2 IgG3-Rae-1β), thereby targeting an NK cell activation signal to HER2+ breast tumor cells. The antitumor efficacy of this anti-HER2-Rae-1β fusion protein was examined in a mouse mammary tumor model engineered to express HER2 (EMT6-HER2 cells). We observed an enhanced cytotoxic response of NK effectors against EMT-HER2 cells in vitro. Mice implanted on one flank with EMT6-HER2 cells and contralaterally with control EMT6 cells exhibited rapid regression of EMT6-HER2 tumors but delayed regression of contralateral EMT6 tumors. IFNγ was implicated, given a lack of antitumor efficacy in IFNγ(-/-) mice. Depletion of either NK cells or CD8(+) T cells abrogated tumor growth inhibition, suggesting essential roles for each in the observed antitumor activity. Mice rejecting EMT6-HER2 tumors after anti-HER2-Rae-1β treatment showed markedly decreased tumor growth when rechallenged with EMT6-HER2 or EMT6 cells, whereas both EMT6 and EMT6-HER2 cells grew in control mice, indicating the development of an adaptive memory response. Our findings demonstrate that administration of an antibody-NKG2D ligand fusion protein can enhance innate and adaptive immune antitumor responses, also evoking additional nontargeted antigens to enhance the potential clinical utility of this approach.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-10-1047DOI Listing

Publication Analysis

Top Keywords

fusion protein
12
innate adaptive
12
emt6-her2 cells
12
cells
11
nkg2d ligand
8
antibody-nkg2d ligand
8
ligand fusion
8
adaptive immune
8
cd8+ cells
8
antitumor efficacy
8

Similar Publications

Single-Virus Microscopy of Biochemical Events in Viral Entry.

JACS Au

January 2025

Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, Virginia 22908, United States.

Cell entry by enveloped viruses involves a set of multistep, multivalent interactions between viral and host proteins as well as manipulation of nanoscale membrane mechanics by these interacting partners. A mechanistic understanding of these events has been challenging due to the complex nature of the interactions and the event-to-event heterogeneity involved. Single-virus microscopy has emerged as a powerful technique to probe viral binding and fusion kinetics.

View Article and Find Full Text PDF

Background: Intracellular membraneless organelles formed by liquid-liquid phase separation (LLPS) function in diverse physiological processes and have been linked to tumor-promoting properties. The nucleolus is one of the largest membraneless organelle formed through LLPS. Deubiquitylating enzymes (DUBs) emerge as novel therapeutic targets against human cancers.

View Article and Find Full Text PDF

Pre-eclampsia is a known hypertensive disorder of pregnancy. While abnormal placentation and poor trophoblast invasion into maternal endometrium during blastocyst implantation are primary causes of pre-eclampsia, the underlying mechanisms remain elusive. Hematopoietic PBX-Interacting protein (HPIP) is an estrogen receptor (ER) interacting protein that plays a pivotal role in cell proliferation, migration, and differentiation; however, its role in trophoblast functions is largely unknown.

View Article and Find Full Text PDF

Cloning and functional characterization of the caffeine oxidase gene CsCDH from Camellia sinensis.

Int J Biol Macromol

January 2025

Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China; National Engineering Research Center for Utilization of Functional Ingredients from Plants, Hunan Agricultural University, Changsha 410128, Hunan, China; Collaborative Innovation Center for Utilization of Functional Ingredients from Plants, Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China. Electronic address:

Theacrine, a purine alkaloid with pharmacological effects such as calming and anti-depressive activities, is biosynthesized through a key rate-limiting enzyme, caffeine oxidase. Despite its importance, the caffeine oxidase gene (CsCDH) in Camellia sinensis has not been cloned to date. We successfully isolated the full-length CsCDH cDNA, which contains a 501-bp open reading frame (ORF) encoding a 166-amino-acid protein with a calculated molecular weight of 18.

View Article and Find Full Text PDF

Qiangji Decoction mitigates neuronal damage, synaptic and mitochondrial dysfunction in SAMP8 mice through the regulation of ROCK2/Drp1-mediated mitochondrial dynamics.

J Ethnopharmacol

January 2025

Health Medical Center, Hubei Minzu University, Enshi, Hubei, 445000, PR China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Disease, Hubei Minzu University, Enshi, Hubei, 445000, PR China. Electronic address:

Ethnopharmacological Relevance: Qiangji Decoction (QJD), a Chinese medicine, is widely used in Traditional Chinese Medicine to treat amnesia and Alzheimer's disease (AD), showing significant anti-AD effects. However, the precise mechanisms behind these effects are not well understood and require more research.

Aim Of The Study: This study aims to elucidate the mechanisms by which QJD ameliorates neuronal damage, synaptic dysfunction, and mitochondrial impairment in AD through the regulation of ROCK2/Drp1-mediated mitochondrial dynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!