Chemoprevention of chemically induced skin tumorigenesis by ligand activation of peroxisome proliferator-activated receptor-beta/delta and inhibition of cyclooxygenase 2.

Mol Cancer Ther

Department of Veterinary Science and The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA.

Published: December 2010

Ligand activation of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) and inhibition of cyclooxygenase-2 (COX2) activity by nonsteroidal anti-inflammatory drugs (NSAID) can both attenuate skin tumorigenesis. The present study examined the hypothesis that combining ligand activation of PPARβ/δ with inhibition of COX2 activity will increase the efficacy of chemoprevention of chemically induced skin tumorigenesis over that observed with either approach alone. To test this hypothesis, wild-type and Pparβ/δ-null mice were initiated with 7,12-dimethylbenz[a]anthracene (DMBA), topically treated with 12-O-tetradecanoylphorbol-13-acetate to promote tumorigenesis, and then immediately treated with topical application of the PPARβ/δ ligand GW0742, dietary administration of the COX2 inhibitor nimesulide, or both GW0742 and nimesulide. Ligand activation of PPARβ/δ with GW0742 caused a PPARβ/δ-dependent delay in the onset of tumor formation. Nimesulide also delayed the onset of tumor formation and caused inhibition of tumor multiplicity (46%) in wild-type mice but not in Pparβ/δ-null mice. Combining ligand activation of PPARβ/δ with dietary nimesulide resulted in a further decrease of tumor multiplicity (58%) in wild-type mice but not in Pparβ/δ-null mice. Biochemical and molecular analysis of skin and tumor samples show that these effects were due to the modulation of terminal differentiation, attenuation of inflammatory signaling, and induction of apoptosis through both PPARβ/δ-dependent and PPARβ/δ-independent mechanisms. Increased levels and activity of PPARβ/δ by nimesulide were also observed. These studies support the hypothesis that combining ligand activation of PPARβ/δ with inhibition of COX2 activity increases the efficacy of preventing chemically induced skin tumorigenesis as compared with either approach alone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058401PMC
http://dx.doi.org/10.1158/1535-7163.MCT-10-0820DOI Listing

Publication Analysis

Top Keywords

ligand activation
24
skin tumorigenesis
16
activation pparβ/δ
16
chemically induced
12
induced skin
12
pparβ/δ inhibition
12
cox2 activity
12
combining ligand
12
pparβ/δ-null mice
12
chemoprevention chemically
8

Similar Publications

Focal Adhesion Regulation as a Strategy against Kidney Fibrosis.

ACS Chem Biol

January 2025

Department of Pediatric Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, and Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China.

Chronic kidney fibrosis poses a significant global health challenge with effective therapeutic strategies remaining elusive. While cell-extracellular matrix (ECM) interactions are known to drive fibrosis progression, the specific role of focal adhesions (FAs) in kidney fibrosis is not fully understood. In this study, we investigated the role of FAs in kidney tubular epithelial cell fibrosis by employing precise nanogold patterning to modulate integrin distribution.

View Article and Find Full Text PDF

Design and synthesis of isatin derivative payloaded peptide-drug conjugate as tubulin inhibitor against colorectal cancer.

Eur J Med Chem

January 2025

China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin, 300457, China. Electronic address:

A series of isatin derivatives which could inhibit colorectal cancer (CRC) were synthesized. Among those compounds, 5B exhibited good inhibitory activity of CRC through the inhibition of tubulin expression, inducing apoptosis, and causing G2/M phase cell cycle arrest pathway, which suggested that 5B could be a potential tubulin inhibitor. Based on that, a novel peptide-drug conjugate (PDC), which employed the CRC cells related receptor CD44 ligand peptide A6 coupling to 5B to accomplish A6-5B.

View Article and Find Full Text PDF

Metal-Modified Zr-MOFs with AIE Ligands for Boosting CO Adsorption and Photoreduction.

Adv Mater

January 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.

The design and synthesis of metal-organic frameworks (MOFs) with outstanding light-harvesting and photoexcitation for artificial photocatalytic CO reduction is an attractive but challenging task. In this work, a novel aggregation-induced emission (AIE)-active ligand, tetraphenylpyrazine (PTTBPC) is proposed and utilized for the first time to construct a Zr-MOF photocatalyst via coordination with stable Zr-oxo clusters. Zr-MOF is featured by a scu topology with a two-fold interpenetrated framework, wherein the PTTBPC ligands enable strong light-harvesting and photoexcitation, while the Zr-oxo clusters facilitate CO adsorption and activation, as well as offer potential sites for further metal modification.

View Article and Find Full Text PDF

Most traditional optical biosensors operate through molecular recognition, where ligand binding causes conformational changes that lead to optical perturbations in the emitting motif. Optical sensors developed from single-stranded DNA-functionalized single-walled carbon nanotubes (ssDNA-SWCNTs) have started to make useful contributions to biological research. However, the mechanisms underlying their function have remained poorly understood.

View Article and Find Full Text PDF

Paddlewheel-type and half-paddlewheel-type diruthenium(II,II) complexes with 1,8-naphthyridine-2-carboxylate.

Dalton Trans

January 2025

Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060, Nishikawatsu, Matsue, Shimane, 690-8504, Japan.

Paddlewheel-type diruthenium(II,II) complexes are paramagnetic with two unpaired electrons ( = 1) and can be utilized as versatile building blocks for higher-order structures, such as supramolecular complexes, coordination polymers, and metal-organic frameworks, although they are generally highly air-sensitive. In this study, we developed an air-stable paddlewheel-type diruthenium(II,II) complex with two electron-withdrawing 1,8-naphthyridine-2-carboxylate (npc) ligands, [Ru(μ-npc)(OCMe)] (1). The two acetate ligands in 1 can be replaced by other carboxylate ligands; the solvothermal reactions of 1 with benzoic acid (HOCPh) yields the heteroleptic [Ru(μ-npc)(OCPh)] (2), whereas its reaction with 1,8-naphthyridine-2-carboxylic acid (Hnpc) produces the homoleptic [Ru(μ-npc)(η-npc)] (3).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!