We use density-functional theory and the nonequilibrium Green's function method as well as phonon dispersion calculations to study the thermal conductance of graphene nanoribbons with armchair and zigzag edges, with and without hydrogen passivation. We find that low-frequency phonon bands of the zigzag ribbons are more dispersive than those of the armchair ribbons and that this difference accounts for the anisotropy in the thermal conductance of graphene nanoribbons. Comparing our results with data on large-area graphene, edge effects are shown to contribute to thermal conductance, enhance the anisotropy in thermal conductance of graphene nanoribbons, and increase thermal conductance per unit width. The edges with and without hydrogen passivation modify the atomic structure and ultimately influence the phonon thermal transport differently for the two ribbon types.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl103508m | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!