Purpose: To compare the effect of respiration-induced motion on delivered dose (the interplay effect) for different treatment techniques under realistic clinical conditions.

Methods: A flexible resin tumor model was created using rapid prototyping techniques based on a computed tomography (CT) image of an actual tumor. Twenty micro-MOSFETs were inserted into the tumor model and the tumor model was inserted into an anthropomorphic breathing phantom. Phantom motion was programed using the motion trajectory of an actual patient. A four-dimensional CT image was obtained and several treatment plans were created using different treatment techniques and planning systems: Conformal (Eclipse), step-and-shoot intensity-modulated radiation therapy (IMRT) (Pinnacle), step-and-shoot IMRT (XiO), dynamic IMRT (Eclipse), complex dynamic IMRT (Eclipse), hybrid IMRT [60% conformal, 40% dynamic IMRT (Eclipse)], volume-modulated are therapy (VMAT) [single-arc (Eclipse)], VMAT [double-arc (Eclipse)], and complex VMAT (Eclipse). The complex plans were created by artificially pushing the optimizer to give complex multileaf collimator sequences. Each IMRT field was irradiated five times and each VMAT field was irradiated ten times, with each irradiation starting at a random point in the respiratory cycle. The effect of fractionation was calculated by randomly summing the measured doses. The maximum deviation for each measurement point per fraction and the probability that 95% of the model tumor had dose deviations less than 2% and 5% were calculated as a function of the number of fractions. Tumor control probabilities for each treatment plan were calculated and compared.

Results: After five fractions, measured dose deviations were less than 2% for more than 95% of measurement points within the tumor model for all plans, except the complex dynamic IMRT, step-and-shoot IMRT (XiO), complex VMAT, and single-arc VMAT plans. Reducing the dose rate of the complex IMRT plans from 600 to 200 MU/min reduced the dose deviations to less than 2%. Dose deviations were less than 5% after five fractions for all plans, except the complex single-arc VMAT plan.

Conclusions: Rapid prototyping techniques can be used to create realistic tumor models. For most treatment techniques, the dose deviations averaged out after several fractions. Treatments with unusually complicated multileaf collimator sequences had larger dose deviations. For IMRT treatments, dose deviations can be reduced by reducing the dose rate. For VMAT treatments, using two arcs instead of one is effective for reducing dose deviations.

Download full-text PDF

Source
http://dx.doi.org/10.1118/1.3496356DOI Listing

Publication Analysis

Top Keywords

dose deviations
32
tumor model
16
dynamic imrt
16
dose
12
treatment techniques
12
reducing dose
12
imrt
11
tumor
8
rapid prototyping
8
prototyping techniques
8

Similar Publications

Impact of diaphragm motion on dosimetry in lower thoracic spine stereotactic body radiotherapy.

Phys Med

January 2025

Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.

Background And Purpose: Free-breathing computed tomography (FBCT) used in treatment planning for lower thoracic (Th8-Th12) spine stereotactic body radiotherapy (SBRT) can cause deviations between planned and irradiated doses due to diaphragm movement (DM). This study analyzed the dosimetric impact of DM on lower thoracic spine SBRT.

Materials And Methods: Data were collected from 19 patients who underwent FBCT and four-dimensional CT (4DCT) during the same session.

View Article and Find Full Text PDF

Objectives: The purpose of this study was to investigate the fundamental properties of spot-scanning proton beams and compare them to Monte Carlo (MC) simulations, both with and without CT calibration, using spatially diverse combinations of materials.

Methods: A heterogeneous phantom was created by spatially distributing titanium, wax, and thermocol to generate six scenarios of heterogeneous combinations. Proton pencil beams ranging in energy from 100 to 226.

View Article and Find Full Text PDF

Clinical Manifestations.

Alzheimers Dement

December 2024

Otsuka Pharmaceutical Development & Commercialization Inc., Princeton, NJ, USA.

Background: Patients with dementia due to Alzheimer's disease may experience multiple different agitation symptoms - including excessive motor activity, verbal aggression, and physical aggression - at varying frequencies. The efficacy of brexpiprazole 2 or 3 mg/day on 29 individual agitation behaviors (Cohen-Mansfield Agitation Inventory [CMAI] items) was previously evaluated. Building upon that work, this post hoc analysis aimed to determine the efficacy of brexpiprazole on the same individual agitation behaviors, but specifically focusing on those patients who were frequently experiencing the behaviors at baseline.

View Article and Find Full Text PDF

Background: Deprescribing antihypertensives is of growing interest in geriatric medicine, yet the impact on functional status is unknown. We emulated a target trial of deprescribing antihypertensive medications compared with continued use on functional status measured by activities of daily living (ADL) in a long-term care population.

Methods: We included 12,238 Veteran Affairs long-term care residents age 65+ who had a stay ≥ 12 weeks between 2006 and 2019.

View Article and Find Full Text PDF

Background: Previously, a depth of anesthesia bispectral index (BIS™) <45 was considered lowand found to have no clinical benefit. A BIS <35 was considered very low and was not only without evident clinical benefit but also associated with a greater risk of postoperative delirium. We considered the association between BIS and the anesthetic dose of inhalational agents, quantified using the minimum alveolar concentration (MAC) fraction, which was the patient's end-tidal inhalational agent concentration divided by the agent's altitude- and age-adjusted minimum alveolar percentage concentration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!