FAD-linked L-glycerol-3-phosphate dehydrogenase purified from liver mitochondria of hyperthyroid rats was incorporated into unilamellar phospholipid liposomes. The incorporation influenced both Vmax,app and Km,app values of the enzyme for its substrate, L-glycerol 3-phosphate. The Km,app for the electron acceptor remained unchanged with a simultaneous slight enhancement of the corresponding Vmax,app value. The steady-state fluorescence anisotropies of the fluorescein isothiocyanate and trimethylammoniumdiphenylhexatriene labels were affected by sodium oleate and calcium ions in the case of both solubilized and liposome-incorporated L-glycerol-3-phosphate dehydrogenase. These results indicate that calcium ions cause a significant alteration of the enzyme conformation. Sodium oleate (used as a model of free fatty acids), besides its direct action on the enzyme itself, affects the enzyme indirectly as well, via alteration of the physical properties of the membrane.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0005-2728(90)90112-hDOI Listing

Publication Analysis

Top Keywords

l-glycerol-3-phosphate dehydrogenase
12
sodium oleate
12
calcium ions
12
oleate calcium
8
incorporation mitochondrial
4
mitochondrial l-glycerol-3-phosphate
4
dehydrogenase liposomes
4
liposomes sodium
4
ions fad-linked
4
fad-linked l-glycerol-3-phosphate
4

Similar Publications

Glycerol is an attractive substrate for microbial fermentations due to its higher degree of reduction compared to glucose. The replacement of the native FAD-dependent glycerol catabolic pathway in Saccharomyces cerevisiae by an artificial NADH-delivering dihydroxyacetone (DHA) pathway is supposed to facilitate the capturing of electrons in fermentation products. This requires that the electrons from the cytosolic NADH are not exclusively transferred to oxygen.

View Article and Find Full Text PDF

The side chain cation of R269 lies at the surface of l-glycerol 3-phosphate dehydrogenase (GPDH) and forms an ion pair to the phosphodianion of substrate dihydroxyacetone phosphate (DHAP), which is buried at the nonpolar protein interior. The R269A mutation of GPDH results in a 110-fold increase in K(m) (2.8 kcal/mol effect) and a 41,000-fold decrease in k(cat) (6.

View Article and Find Full Text PDF

Rationale: Pyridine nucleotides regulate the cardiac Na(+) current (I(Na)) through generation of reactive oxygen species (ROS).

Objective: We investigated the source of ROS induced by elevated NADH.

Methods And Results: In human embryonic kidney (HEK) cells stably expressing the cardiac Na(+) channel, the decrease of I(Na) (52±9%; P<0.

View Article and Find Full Text PDF

Restoring a metabolic pathway.

ACS Chem Biol

October 2008

Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, USA.

Gluconeogenesis is blocked in a strain of Escherichia coli that is deficient in triosephosphate isomerase, but it was restored by the insertion of a plasmid coding for an L-glyceraldehyde 3-phosphate reductase (YghZ). This reductase provides a "bypass" that produces dihydroxyacetone phosphate (DHAP) by the consecutive enzyme-catalyzed reduction of L-glyceraldehyde 3-phosphate ( L-GAP) by NADPH to give L-glycerol 3-phosphate and reoxidation by NAD(+) catalyzed by endogenous L-glycerol 3-phosphate dehydrogenase to give DHAP. The origin of cellular L-GAP remains to be determined.

View Article and Find Full Text PDF

Interest in L-glycerol 3-phosphate (L-G3P) production via microbial fermentation is due to the compound's potential to replace the unstable substrate dihydroxyacetone phosphate (DHAP) in one-pot enzymatic carbohydrate syntheses. A Saccharomyces cerevisiae strain with deletions in both genes encoding specific L-G3Pases (GPP1 and GPP2) and multicopy overexpression of L-glycerol 3-phosphate dehydrogenase (GPD1) was studied via small-scale (100 mL) batch fermentations under quasi-anaerobic conditions. Intracellular accumulation of L-G3P reached extremely high levels (roughly 200 mM) but thereafter declined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!