Lyso-form fragment ions facilitate the determination of stereospecificity of diacyl glycerophospholipids.

Rapid Commun Mass Spectrom

Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada.

Published: January 2011

AI Article Synopsis

Article Abstract

In this work we report the development of a novel methodology for the determination of stereospecificity of diacyl glycerophospholipids, including glycerophosphatidic acids (PA), glycerophosphoserines (PS), glycerophosphoglycerols (PG), glycerophosphoinositols (PI), and glycerophosphoethanolamines (PE), which can be conventionally ionized in negative ion mode. This methodology uses MS(2) recorded on a hybrid quadrupole time-of-flight mass spectrometer to determine the stereospecificity of diacyl glycerophospholipids based on the lyso-form fragment ions, attributed to the neutral loss of fatty acyl moieties. The fragmentation patterns of a variety of diacyl glycerophospholipid standards were first fully examined over a wide range of collision energy. We observed that lyso-form fragment ions corresponding to the neutral loss of fatty acyl moieties attached to the sn2 position as free fatty acids ([M-Sn2](-) ) and as ketenes ([M-(Sn2-H(2) O)](-) ) exhibited consistently higher intensity than their counterpart ions due to the neutral loss of fatty acyl moieties attached to the sn1 position ([M-Sn1](-) and [M-(Sn1-H(2) O)](-) ). Therefore, we concluded that an empirical fragmentation rule can be used to precisely determine the stereospecificity of diacyl glycerophospholipids, primarily on the basis of relative abundance of the lyso-form fragment ions. We then examined the product ion spectra of diacyl glycerophospholipids recorded from lipid extracts of rat hepatoma cells, where the stereospecific information of these lipids was conclusively determined. Combining the novel methodology reported in this work with the currently widely practiced mass spectrometric techniques such as multiple precursor ion scans (MPIS), fatty acyl scans (FAS), and multidimensional mass spectrometry based shotgun lipidomics (MDMS-SL), should enable a reliable and convenient platform for comprehensive glycerophospholipid profiling.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.4846DOI Listing

Publication Analysis

Top Keywords

diacyl glycerophospholipids
20
lyso-form fragment
16
fragment ions
16
stereospecificity diacyl
16
fatty acyl
16
neutral loss
12
loss fatty
12
acyl moieties
12
determination stereospecificity
8
novel methodology
8

Similar Publications

Article Synopsis
  • This study examines how serum metabolite profiles can help understand feed efficiency in lactating Holsteins and identify biomarkers for predicting residual feed intake (RFI).
  • Comparisons were made between high and low RFI cows at different lactation stages, revealing significant differences in various metabolites, especially notable changes in early and mid-lactation.
  • The findings suggest that specific metabolites, like p-Hydroxyhippuric acid and acetylornithine, could serve as effective biomarkers for predicting RFI, with models showing varying predictive accuracy across lactation stages.
View Article and Find Full Text PDF

Advanced Method for the In Vivo Measurements of Lysophospholipid Translocation Across the Inner (Cytoplasmic) Membrane of Escherichia coli.

Methods Mol Biol

December 2024

Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center, McGovern Medical School, Houston, TX, USA.

Phospholipid translocation occurs ubiquitously in biological membranes and primarily is protein catalyzed. Lipid flippases mediate the net translocation of specific phospholipids from one leaflet of a membrane to the other. In the inner (cytoplasmic) membrane (IM) of Gram-negative bacteria, lysophospholipid translocase (LplT) and cytosolic bifunctional acyl-acyl carrier protein (ACP) synthetase/2-acylglycerolphosphoethanolamine acyltransferase (Aas) form a glycerophospholipid regeneration system, which is capable of facilitating rapid retrograde translocation of lyso forms of phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and cardiolipin (CL) but not exogenous (host-derived) phosphatidylcholine (PC) across the IM of Gram-negative diderm (two-membraned) bacteria in consequential order lyso-PE = lyso-PG > > lysophosphatidic acid (lyso-PA) >> lyso-PC.

View Article and Find Full Text PDF

Phosphatidylglycerol (1,2-diacyl-sn-glycero-3-phospho-glycerol) (PG) is one of the most abundant lipids in biological membranes. However, the chirality of the carbon atom in glycerol phosphate differs among the three kingdoms: bacteria, archaea, and eukaryotes. It is commonly assumed that archaea, as well as bacteria and eukaryotes, produce only one isomer of PG.

View Article and Find Full Text PDF

Lipid responses to perfluorooctane sulfonate exposure for multiple rat organs.

Ecotoxicol Environ Saf

June 2024

Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan. Electronic address:

Perfluorooctane sulfonate (PFOS) is a persistent chemical that has long been a threat to human health. However, the molecular effects of PFOS on various organs are not well studied. In this study, male Sprague-Dawley rats were treated with various doses of PFOS through gavage for 21 days.

View Article and Find Full Text PDF

Mycobacterial plasma membrane, together with the peptidoglycan-arabinogalactan cell wall and waxy outer membrane, creates a robust permeability barrier against xenobiotics. The fact that several antituberculosis drugs target plasma membrane-embedded enzymes underscores the importance of the plasma membrane in bacterial physiology and pathogenesis. Nevertheless, its accurate phospholipid composition remains undefined, with conflicting reports on the abundance of phosphatidylinositol mannosides (PIMs), physiologically important glycolipids evolutionarily conserved among mycobacteria and related bacteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!