Kynurenic acid (KYNA) is an endogenous antagonist of the ionotropic glutamate receptors and the α7 nicotinic acetylcholine receptor as well as an agonist of the G-protein-coupled receptor GPR35. In this study, KYNA distribution and synthesis in plants as well as its absorption was researched. KYNA level was determined by means of the high-performance liquid chromatography with fluorescence detection. KYNA was found in leaves, flowers, and roots of tested medicinal herbs: dandelion (Taraxacum officinale), common nettle (Urtica dioica), and greater celandine (Chelidoniummajus). The highest concentration of this compound was detected in leaves of dandelion--a mean value of 0.49 µg/g wet weight. It was shown that KYNA can be synthesized enzymatically in plants from its precursor, L-kynurenine, or absorbed by plants from the soil. Finally, the content of KYNA was investigated in 21 herbal tablets, herbal tea, herbs in sachets, and single herbs in bags. The highest content of KYNA in a maximum daily dose of herbal medicines appeared in St. John's wort--33.75 µg (tablets) or 32.60 µg (sachets). The pharmacological properties of KYNA and its presence in high concentrations in medicinal herbs may suggest that it possesses therapeutic potential, especially in the digestive system and should be considered a new valuable dietary supplement.

Download full-text PDF

Source
http://dx.doi.org/10.1055/s-0030-1250604DOI Listing

Publication Analysis

Top Keywords

distribution synthesis
8
kynurenic acid
8
kyna
8
medicinal herbs
8
content kyna
8
synthesis absorption
4
absorption kynurenic
4
plants
4
acid plants
4
plants kynurenic
4

Similar Publications

Background: Platelets are correlated with myeloid leukemia (ML), but to date, there have been no studies confirming the causal relationship between them.

Methods: Platelet count (PLT), mean platelet volume (MPV), plateletcrit (PCT), and platelet distribution width (PDW) data were obtained from the GWAS catalog database as exposure factors. Acute myeloid leukemia (AML) and chronic myeloid leukemia (CML) data were obtained from the FinnGen database as outcome indicators.

View Article and Find Full Text PDF

Feasibility of IR-MALDESI Mass Spectrometry Imaging of PFAS.

J Mass Spectrom

February 2025

FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA.

Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a class of emerging contaminants that have been in use industrially since the 1940s. Their long-term and extensive commercial use has led to their ubiquitous presence in the environment. The ability to measure the bioconcentration and distribution of PFAS in the tissue of aquatic organisms helps elucidate the persistence of PFAS as well as environmental impacts.

View Article and Find Full Text PDF

The development of new and improved antiretroviral therapies that allow for alternative dosing schedules is needed for people living with HIV-1. Islatravir is a deoxyadenosine analog in development for the treatment of HIV-1 that suppresses HIV-1 replication via multiple mechanisms of action, including reverse transcriptase translocation inhibition and delayed chain termination. Islatravir is differentiated from other HIV-1 antiretrovirals by its high potency, long , broad tissue distribution, and favorable drug resistance profile.

View Article and Find Full Text PDF

The urea oxidation reaction (UOR) is characterized by a lower overpotential compared to the oxygen evolution reaction (OER) during electrolysis, which facilitates the hydrogen evolution reaction (HER) at the cathode. Charge distribution, which can be modulated by the introduction of a heterostructure, plays a key role in enhancing the adsorption and cleavage of chemical groups within urea molecules. Herein, a facile all-room temperature synthesis of functional heterojunction NiCoS/CoMoS grown on carbon cloth (CC) is presented, and the as-prepared electrode served as a catalyst for simultaneous hydrogen evolution and urea oxidation reaction.

View Article and Find Full Text PDF

The plant Polygonum capitatum (P. capitatum) contains a variety of flavonoids that are distributed differently among different parts. Nevertheless, differentially expressed genes (DEGs) associated with this heterogeneous distribution have not been identified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!