The phenotypic identities and characterization of neural networks disrupted after neonatal hypoxia-ischemia (HI) in the preterm brain remain to be elucidated. Interruption of the central serotonergic (5-hydroxytryptamine [5-HT]) system can lead to numerous functional deficits, many of which match those in human preterm neonates exposed to HI. How the central serotonergic network is damaged after HI and mechanisms underlying such injury are not known. We used a Postnatal Day 3 rat model of preterm HI and found parallel reductions in the 5-HT transporter expression, 5-HT levels and numbers of 5-HT-positive dorsal raphe neurons 1 week after insult. Post-HI administration of minocycline, an inhibitor of activated microglia, attenuated HI-induced damage to the serotonergic network. Minocycline effects seemed to be region specific, that is, where there was micro-glial activation and increases in tumor necrosis factor-α and inter-leukin 1β. The concurrent improvement in serotonergic outcomes suggests that inhibition of neuroinflammation prevented damage to the serotonergic neurons rather than affected the regulation of 5-HT or serotonin transporter. These data elucidate the mechanisms of serotonergic network injury in HI, and despite the known adverse effects associated with the use of minocycline in neonates, postinsult administration of minocycline may represent a novel approach to counter neuroinflammation and preserve the integrity of the central serotonergic network in the preterm neonate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/NEN.0b013e3182020b7b | DOI Listing |
Heliyon
March 2024
School of Basic Medicine, Heilongjiang University Of Chinese Medicine, Harbin, 150040, China.
Ethnopharmacological Relevance: Alzheimer's disease (AD) is an incurable neurodegenerative disease that has become one of the most important diseases threatening global public health security. Dihuang Yinzi (DHYZ) is a traditional Chinese medicine that has been widely used for the treatment of AD and has significant therapeutic effects, but its specific mechanism of action is still unclear.The aim of the study is to investigate the specific mechanism of DHYZ in treating AD based on brain metabolomics and network pharmacology.
View Article and Find Full Text PDFHeliyon
November 2024
School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
Transl Psychiatry
December 2024
Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK.
Epilepsy Behav
January 2025
Division of Child Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA. Electronic address:
Dravet syndrome (DS) is a severe genetic developmental and epileptic encephalopathy, primarily caused by SCN1A gene mutations. Historically, treatments like clobazam and valproate have been used without evidence from randomized controlled trials (RCTs). However, the therapeutic landscape of DS has evolved with multiple RCTs demonstrating the efficacy and safety of three antiseizure medications (ASMs): stiripentol, cannabidiol (CBD), and fenfluramine.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
November 2024
Department of Physiology, Medical School, Istanbul Okan University, Istanbul, Turkey.
Kisspeptins are reported to be the most potent activators of the hypothalamus-pituitary-gonadal (HPG) axis known to date. Kisspeptin potently elicits gonadotropin-releasing hormone (GnRH) release and luteinizing hormone (LH) secretion, even in the pre-pubertal period. Beyond the hypothalamus, kisspeptin is also expressed in limbic and paralimbic brain regions, which are areas of the neurobiological network primarily implicated in emotional behaviors alongside sexual functions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!