Triplication of chromosome 21 in Down syndrome (DS) results in overexpression of the minibrain kinase/dual-specificity tyrosine phosphorylated and regulated kinase 1A gene (DYRK1A). DYRK1A phosphorylates cytoplasmic tau protein and appears in intraneuronal neurofibrillary tangles (NFTs). We have previously shown significantly more DYRK1A-positive NFTs in DS brains than in sporadic Alzheimer disease (AD) brains. This study demonstrates a gene dosage-proportional increase in the level of DYRK1A in DS in the cytoplasm and the cell nucleus, and enhanced cytoplasmic and nuclear immunoreactivity of DYRK1A in DS. The results suggest that overexpressed DYRK1A may alter both phosphorylation of tau and alternative splicing factor (ASF). Two-dimensional electrophoresis revealed modification of ASF phosphorylation in DS/AD and AD in comparison to controls. Altered phosphorylation of ASF by overexpressed nuclear DYRK1A may contribute to the alternative splicing of the tau gene and an increase by 2.68 × of the 3R/4R ratio in DS/AD, and a several-fold increase in the number of 3R tau-positive NFTs in DS/AD subjects compared with that in sporadic AD subjects. These data support the hypothesis that phosphorylation of ASF by overexpressed DYRK1A may contribute to alternative splicing of exon 10, increased expression of 3R tau, and early onset of neurofibrillary degeneration in DS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3083064PMC
http://dx.doi.org/10.1097/NEN.0b013e318202bfa1DOI Listing

Publication Analysis

Top Keywords

alternative splicing
12
neurofibrillary degeneration
8
tau protein
8
overexpressed dyrk1a
8
phosphorylation asf
8
asf overexpressed
8
dyrk1a contribute
8
contribute alternative
8
dyrk1a
7
tau
5

Similar Publications

One of the most important goals of contemporary biology is to understand the principles of the molecular order underlying the complex dynamic architecture of cells. Here, we present an overview of the main driving forces involved in the cellular molecular complexity and in the emergent functional dynamic structures, spanning from the most basic molecular organization levels to the complex emergent integrative systemic behaviors. First, we address the molecular information processing which is essential in many complex fundamental mechanisms such as the epigenetic memory, alternative splicing, regulation of transcriptional system, and the adequate self-regulatory adaptation to the extracellular environment.

View Article and Find Full Text PDF

The effect of LARP7 on gene expression during osteogenesis.

Mol Biol Rep

January 2025

Institute of Health Sciences, Department of Medical and Surgical Research, Hacettepe University, Ankara, Turkey.

Background: La-related protein 7 (LARP7) is a key regulator of RNA metabolism and is thought to play a role in various cellular processes. LARP7 gene autosomal recessive mutations are the cause of Alazami syndrome, which presents with skeletal abnormalities, intellectual disabilities, and facial dysmorphisms. This study aimed to determine the role of LARP7 in modulating gene expression dynamics during osteogenesis.

View Article and Find Full Text PDF

The chromosome 5p15.33 region, which encodes telomerase reverse transcriptase (TERT), harbors multiple germline variants identified by genome-wide association studies (GWAS) as risk for some cancers but protective for others. We characterized a variable number tandem repeat within intron 6 (VNTR6-1, 38-bp repeat unit) and observed a strong association between VNTR6-1 alleles (Short: 24-27 repeats, Long: 40.

View Article and Find Full Text PDF

Identification of pennaceous barbule cell factor (PBCF), a novel gene with spatiotemporal expression in barbule cells during feather development.

Gene

January 2025

Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Kitaku, Tsushimanaka, Okayama 700-8530, Japan; Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Kitaku, Tsushimanaka, Okayama 700-8530, Japan. Electronic address:

Bird contour feathers exhibit a complex hierarchical structure composed of a rachis, barbs, and barbules, with barbules playing a crucial role in maintaining feather structure and function. Understanding the molecular mechanisms underlying barbule formation is essential for advancing our knowledge of avian biology and evolution. In this study, we identified a novel gene, pennaceous barbule cell factor (PBCF), using microarray analysis, RT-PCR, and in situ hybridization.

View Article and Find Full Text PDF

5-Methylcytosine-modified circRNA-CCNL2 regulates vascular remdeling in hypoxic pulmonary hypertension through binding to FXR2.

Int J Biol Macromol

January 2025

Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, PR China; College of Pharmacy, Harbin Medical University, Harbin 150081, PR China; Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, Harbin 150081, PR China. Electronic address:

Pulmonary hypertension (PH) is a malignant cardiovascular disease with a complex etiology. 5-Methylcytosine (m5C) is a post-transcriptional RNA modification identified in both stable and highly abundant RNAs, with a lower frequency of occurrence in circular RNAs (circRNAs). Nevertheless, the function of m5C-modified circRNAs in the pathogenesis of PH remains uncertain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!