Of the hundreds of new tuberculosis (TB) vaccine candidates, some have therapeutic value in addition to their prophylactic properties. This is the case for the DNA vaccine encoding heat-shock protein 65 (DNAhsp65) from Mycobacterium leprae. However, there are concerns about the use of DNA vaccines in certain populations such as newborns and pregnant women. Thus, the optimization of vaccination strategies that circumvent this limitation is a priority. This study evaluated the efficacy of a single dose subunit vaccine based on recombinant Hsp65 protein against infection with M. tuberculosis H37Rv. The Hsp65 protein in this study was either associated or not with immunostimulants, and was encapsulated in biodegradable PLGA microspheres. Our results demonstrate that the protein was entrapped in microspheres of adequate diameter to be engulfed by phagocytes. Mice vaccinated with a single dose of Hsp65-microspheres or Hsp65+CpG-microspheres developed both humoral and cellular-specific immune responses. However, they did not protect mice against challenge with M. tuberculosis. By contrast, Hsp65+KLK-microspheres induced specific immune responses that reduced bacilli loads and minimized lung parenchyma damage. These data suggest that a subunit vaccine based on recombinant protein Hsp65 is feasible.

Download full-text PDF

Source
http://dx.doi.org/10.4161/hv.6.12.13350DOI Listing

Publication Analysis

Top Keywords

subunit vaccine
12
vaccine based
12
single dose
8
based recombinant
8
hsp65 protein
8
immune responses
8
protein
6
based biodegradable
4
biodegradable microspheres
4
microspheres carrying
4

Similar Publications

Immunologic assessment of the impact of SARS-CoV-2 vaccine booster doses on humoral immunity: a cross-sectional study in morocco.

BMC Infect Dis

December 2024

Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 1 Place Louis Pasteur, Casablanca, 20360, Morocco.

To assess the impact of the SARS-CoV-2 booster dose on the immune response against COVID-19, we conducted a cross-sectional study in the Casablanca-Settat region of Morocco. The study included 2,802 participants from 16 provinces, all of whom had received three doses of a SARS-CoV-2 vaccine. IgG antibodies targeting the S1 RBD subunit of the SARS-CoV-2 spike protein were quantified using the SARS-CoV-2 IgG II Quant assay and measured on the Abbott Architect i2000SR instrument.

View Article and Find Full Text PDF

Immunogenicity of a multivalent protein subunit vaccine based on non-glycosylated RBD antigens of SARS-cov-2 and its variants.

Virology

December 2024

Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Departamento de Biotecnología y Bioingeniería, Av. Instituto Politécnico Nacional 2508, Mexico City, 07360, Mexico; CINVESTAV, Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, Mexico. Electronic address:

COVID-19 infections continue due to accessibility barriers to vaccines and the emergence of SARS-CoV-2 variants. An effective, safe, accessible, and broad-spectrum vaccine is still needed to control the disease. We developed a multivalent protein subunit vaccine comprising antigens designed from a non-N-glycosylated region of the receptor-binding domain of the spike protein of SARS-CoV-2.

View Article and Find Full Text PDF

Impact of influenza immune imprinting on immune responses to subsequent vaccinations in mice.

Vaccine

December 2024

Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA 30303, USA. Electronic address:

The immune memory imprinted during an individual's initial influenza exposure (influenza imprinting) has long-lasting effects on the host's response to subsequent influenza infections and vaccinations. Here, we investigate how different influenza virus imprinting impacts the immune responses to subunit, inactivated virus, and protein-based nanoparticle vaccines in Balb/c mice. Our results indicated a phylogenetic distance-dependent effect of influenza imprinting on subunit hemagglutinin (HA) or formalin-inactivated (FI) virus vaccine immunizations.

View Article and Find Full Text PDF

Periodic mesoporous organicsilica-loaded mincle agonists enhance the immunogenicity of COVID-19 subunit vaccines by dual activation of B cells and dendritic cells.

Acta Biomater

December 2024

National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China. Electronic address:

Effective vaccination is crucial for intervening in the COVID-19 pandemic. However, with the continuous mutation of the SARS-CoV-2, existing vaccines including subunit vaccines cannot effectively prevent virus infections. Hence, there is an urgent need to enhance the immunogenicity of existing vaccines to induce a more potent and durable immune response.

View Article and Find Full Text PDF

QuantiFERON SARS-CoV-2 assay for the evaluation of cellular immunity after immunization with mRNA SARS-CoV-2 vaccines: a systematic review and meta-analysis.

Immunol Res

December 2024

Department of Pediatrics, Infectious Diseases and Chemotherapy Research Laboratory, Medical School, National and Kapodistrian University of Athens, Aghia Sophia" Children's Hospital, 11527, Athens, Greece.

A systematic review and meta-analysis were performed to evaluate the virus-specific T-cell response after COVID-19 mRNA vaccination, using the QuantiFERON SARS-CoV-2 interferon-γ release assay. A search was conducted (June 8, 2023) in the PUBMED, SCOPUS, and medRxiv databases, to identify studies reporting the QuantiFERON SARS-CoV-2 (Starter (two antigen tubes) or Starter + Extended Pack (three antigen tubes), cut-off ≥ 0.15 IU/mL) positivity rate (PR) in immunocompetent adults, following the administration of two or three COVID-19 mRNA vaccine doses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!