A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Folic acid plus α-tocopherol mitigates amyloid-β-induced neurotoxicity through modulation of mitochondrial complexes activity. | LitMetric

Folic acid plus α-tocopherol mitigates amyloid-β-induced neurotoxicity through modulation of mitochondrial complexes activity.

J Alzheimers Dis

Departamento de Farmacologia, Centro de ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.

Published: March 2012

Early symptoms of Alzheimer's disease (AD) have been attributed to amyloid-β (Aβ) toxicity. The pathophysiology of AD is complex and involves several different biochemical pathways, including defective Aβ protein metabolism, neuroinflammation, oxidative processes, and mitochondrial dysfunction. In the current study, we assessed the molecular mechanisms, mainly the modifications in the activity of mitochondrial complexes, whereby the association of folic acid and α-tocopherol protects mice against the Aβ-induced neurotoxicity. Oral treatment with folic acid (50 mg/kg) plus α-tocopherol (500 mg/kg), once a day during 14 consecutive days, protected mice against the Aβ₁₋₄₀-induced cognitive decline, synaptic loss, and neuronal death. However, chronic treatment comprising folic acid plus α-tocopherol was ineffective on Aβ-induced glial cell activation, suggesting that the effect of this treatment is independent of anti-inflammatory features. Interestingly, the results obtained in our study suggest that mitochondrial energy metabolism is impaired by the Aβ peptide, and upregulation of mitochondrial genes may be a compensatory response, as demonstrated by the increase in mitochondrial complexes I, II, and IV activity, in the hippocampus of mice, after Aβ₁₋₄₀ injection. Of note, the chronic treatment comprising folic acid plus α-tocopherol prevented the increase in the activity of mitochondrial complexes I and IV induced by Aβ₁₋₄₀. Together, these results show the antioxidant effect of the combination of folic acid and α-tocopherol, as observed by the decrease in NO generation from iNOS and nNOS, preventing an increase in the activity of mitochondrial complexes, mainly I and IV, and the neuronal death induced by the Aβ₁₋₄₀ peptide.

Download full-text PDF

Source
http://dx.doi.org/10.3233/JAD-2010-101320DOI Listing

Publication Analysis

Top Keywords

folic acid
24
acid α-tocopherol
20
mitochondrial complexes
20
activity mitochondrial
12
mitochondrial
8
complexes activity
8
neuronal death
8
chronic treatment
8
treatment comprising
8
comprising folic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!