Spectrometry of linear energy transfer with track-etched detectors in carbon ion beams, MONO and SOBP.

Radiat Prot Dosimetry

Department of Radiation Dosimetry, Nuclear Physics Institute, AS CR, Prague, Czech Republic.

Published: February 2011

Five various materials employed as track-etched detectors (TEDs) were exposed in beams of carbon ions with energy 290 MeV. u(-1) in the HIMAC-BIO facility in Japan. The exposures were performed behind various types of polymethyl methacrylate shielding. The beam had two possible set-ups--monoenergetic set-up and modulated spread-out Bragg peak set-up. All used TEDs are polyallyl diglycol carbonates (PADCs): Page from Mouldings (Pershore) Ltd, Tastrak from Track Analysis Systems Ltd, both from the UK; USF4 from American Technical Plastics from the USA and two products of Japan Fukuvi Chemical Industry Co., Ltd--TD1 and Baryotrak. Spectra of linear energy transfer and depth-dose distributions were obtained. Besides, differences among PADCs are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1093/rpd/ncq471DOI Listing

Publication Analysis

Top Keywords

linear energy
8
energy transfer
8
track-etched detectors
8
spectrometry linear
4
transfer track-etched
4
detectors carbon
4
carbon ion
4
ion beams
4
beams mono
4
mono sobp
4

Similar Publications

Background: Identifying robust integrated pest management (IPM) strategies requires the testing of multiple factors at the same time and assessing their combined effects e.g., on disease control.

View Article and Find Full Text PDF

Understanding the adsorption behavior of intermediates at interfaces is crucial for various heterogeneous systems, but less attention has been paid to metal species. This study investigates the manipulation of Co spin states in ZnCoO spinel oxides and establishes their impact on metal ion adsorption. Using electrochemical sensing as a metric, we reveal a quasi-linear relationship between the adsorption affinity of metal ions and the high-spin state fraction of Co sites.

View Article and Find Full Text PDF

In this study, a Cu@Ag core-shell was synthesized using a co-precipitation method. To create a new electrochemical sensor, a Cu@Ag core-shell with conductive polymers such as polyalizarin yellow R (PA) and Nafion (Nf) was immobilized on the surface of a glassy carbon electrode (Cu@Ag-Nf/PA/GCE). X-ray diffraction analysis (XRD), energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), and Fourier Transform Infrared Spectroscopy (FTIR) techniques were employed to characterize the Cu@Ag-Nf/PA/GCE.

View Article and Find Full Text PDF

Assessment of the Performance of the Dose Calibrator Used in Radioactivity Measurement.

Indian J Nucl Med

November 2024

Center for Research and Production of Radioisotopes, Dalat Nuclear Research Institute, Vietnam Atomic Energy Institute (VINATOM), Da Lat City, Lam Dong Province, Vietnam.

Aims: This study aimed to evaluate the principal technical characteristics of a well-type gas-filled ionization chamber dose calibrator used in measuring radiopharmaceutical activity, namely accuracy, repeatability, and linearity. Furthermore, this work also explored the correlation between the device's response and the position and volume of the radiopharmaceutical I-131.

Materials And Methods: Experimental measurements were conducted on the ATOMLAB 500 dose calibrator using NIST traceable Cs-137 source to determine the accuracy and repeatability.

View Article and Find Full Text PDF

The optimized composition and precisely tailored structure configuration play critical roles in enhancing the catalytic reaction kinetics. Here we report a distinctive core@satellite strategy for designing the advanced platinum-nickel@platinum-nickel-copper-cobalt-indium high-entropy alloy nanowires (PtNi@HEA NWs) as efficient bifunctional catalysts in the proton exchange membrane fuel cell. Impressively, the PtNi@HEA NWs/C shows 19.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!