Effects of mechanical properties and thermal motion of POPE lipid membrane on electroporation were studied by molecular dynamics simulations. Among simulations in which specific atoms of lipids were artificially constrained at their equilibrium positions using a spring with force constant of 2.0 kcal/(molŲ) in the external electric field of 1.4 kcal/(molŠe), only constraint on lateral motions of lipid tails prohibited electroporation while non-tail parts had little effects. When force constant decreased to 0.2 kcal/(molŲ) in the position constraints on lipid tails in the external electric field of 2.0 kcal/(molŠe), water molecules began to enter the membrane. Position constraints of lipid tails allow water to penetrate from both sides of membrane. Thermal motion of lipids can induce initial defects in the hydrophobic core of membrane, which are favorable nucleation sites for electroporation. Simulations at different temperatures revealed that as the temperature increases, the time taken to the initial pore formation will decrease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2010.12.042DOI Listing

Publication Analysis

Top Keywords

thermal motion
12
lipid tails
12
lipid membrane
8
membrane electroporation
8
molecular dynamics
8
dynamics simulations
8
force constant
8
external electric
8
electric field
8
field kcal/molÅ
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!