Growth and reproductive costs of larval defence in the aposematic lepidopteran Pieris brassicae.

J Anim Ecol

Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.

Published: March 2011

AI Article Synopsis

Article Abstract

1. Utilization of plant secondary compounds for antipredator defence is common in immature herbivorous insects. Such defences may incur a cost to the animal, either in terms of survival, growth rate or in the reproductive success. 2. A common defence in lepidopterans is the regurgitation of semi-digested material containing the defensive compounds of the food plant, a defence which has led to gut specialization in this order. Regurgitation is often swift in response to cuticular stimulation and deters predators from consuming or parasitizing the larva. The loss of food and other gut material seems likely to impact on fitness, but evidence is lacking. 3. Here, we raised larvae of the common crop pest Pieris brassicae on commercial cabbage leaves, simulated predator attacks throughout the larval period, and measured life-history responses. 4. We found that the probability of survival to pupation decreased with increasing frequency of attacks, but this was because of regurgitation rather than the stimulation itself. There was a growth cost to the defence such that the more regurgitant that individuals produced over the growth period, the smaller they were at pupation. 5. The number of mature eggs in adult females was positively related to pupal mass, but this relationship was only found when individuals were not subjected to a high frequency of predator simulation. This suggests that there might be cryptic fitness costs to common defensive responses that are paid despite apparent growth rate being maintained. 6. Our results demonstrate a clear life-history cost of an antipredator defence in a model pest species and show that under certain conditions, such as high predation threat, the expected relationship between female body size and potential fecundity can be disrupted.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2656.2010.01786.xDOI Listing

Publication Analysis

Top Keywords

pieris brassicae
8
antipredator defence
8
growth rate
8
defence
6
growth
5
growth reproductive
4
reproductive costs
4
costs larval
4
larval defence
4
defence aposematic
4

Similar Publications

The geographic mosaic of coevolution predicts reciprocal selection, the first step in coevolution, to vary with changing biotic and abiotic environmental conditions. Studying how temperature affects reciprocal selection is essential to connect effects of global warming on the microevolutionary patterns of coevolution to the ecological processes underlying them. In this study, we investigated whether temperature influenced reciprocal selection between a plant (Brassica rapa) and its pollinating butterfly herbivore (Pieris rapae).

View Article and Find Full Text PDF

Tolerance to insect herbivory increases with progressing plant development.

Plant Biol (Stuttg)

December 2024

Laboratory of Entomology, Plant Sciences, Wageningen University and Research, Wageningen, The Netherlands.

Plants can sustain various degrees of damage or compensate for tissue loss by regrowth without significant fitness costs. This tolerance to insect herbivory depends on the plant's developmental stage during which the damage is inflicted and on how much tissue is removed. Plant fitness correlates, that is, biomass and germination of seeds, were determined at different ontogenetic stages, vegetative, budding, or flowering stages of three annual brassicaceous species exposed to feeding by Pieris brassicae caterpillars at different intensities.

View Article and Find Full Text PDF

Diesel exhaust and ozone adversely affect pollinators and parasitoids within flying insect communities.

Sci Total Environ

January 2025

School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading, Berkshire RG6 6EU, UK; Centre for Sustainable Agricultural Systems, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland 4350, Australia.

The effects of air pollution on human and animal health, and on the functioning of terrestrial ecosystems, are wide-ranging. This potentially includes the disruption of valuable services provided by flying insects (e.g.

View Article and Find Full Text PDF

Butterfly eggs prime anti-herbivore defense in an annual but not perennial Arabidopsis species.

Planta

October 2024

Applied Zoology/Animal Ecology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany.

Unlike Arabidopsis thaliana, defenses of Arabidopsis lyrata against Pieris brassicae larval feeding are not primable by P. brassicae eggs. Thus, egg primability of plant anti-herbivore defenses is not phylogenetically conserved in the genus Arabidopsis.

View Article and Find Full Text PDF

Caterpillar-parasitoid interactions: species-specific influences on host microbiome composition.

FEMS Microbiol Ecol

September 2024

CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, B-3001 Leuven, Belgium.

There is increasing evidence that host-parasitoid interactions can have a pronounced impact on the microbiome of host insects, but it is unclear to what extent this is caused by the host and/or parasitoid. Here, we compared the internal and external microbiome of caterpillars of Pieris brassicae and Pieris rapae parasitized by Cotesia glomerata or Cotesia rubecula with nonparasitized caterpillars. Additionally, we investigated the internal and external microbiome of the parasitoid larvae.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!