Vortex-assisted tryptic digestion.

Rapid Commun Mass Spectrom

Department of Chemistry, Chungnam National University, Daejeon, South Korea.

Published: January 2011

The effect of vortex-induced vibration during tryptic digestion was investigated by applying different vibrational speeds (0, 600, 1200, or 2500 rpm) to digestion solutions for varying durations (10, 20, 30, 40, or 60 min) at two different incubation temperatures (25°C or 37°C). The most rapid digestion was observed with the highest vibrational speed and temperature. With the application of 2500 rpm at 37°C, the tryptic digestion of each of three standard proteins (cytochrome c, myoglobin, or bovine serum albumin) provided complete disappearance of the protein within 60 min, as determined by matrix-assisted laser desorption/ionization mass spectrometry. Compared to conventional overnight digestion, 60-min vortex-assisted tryptic digestion generated longer peptides, due primarily to the limited digestion time and provided better sequence coverages (89% vs. 78% for cytochrome c, 100% vs. 87% for myoglobin, and 38% vs. 26% for BSA). The longer peptides should be advantageous to analytical methods such as the middle-down approach that benefit from increased sequence coverage of proteins. Vortex-assisted tryptic digestion is expected to be a useful method for rapid tryptic digestion of proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.4840DOI Listing

Publication Analysis

Top Keywords

tryptic digestion
24
vortex-assisted tryptic
12
digestion
10
longer peptides
8
tryptic
5
digestion vortex-induced
4
vortex-induced vibration
4
vibration tryptic
4
digestion investigated
4
investigated applying
4

Similar Publications

Reversed-phase liquid chromatography (RPLC) is an essential tool for separating complex mixtures such as proteolytic digests in bottom-up proteomics. There is growing interest in methods that can predict the RPLC retention behavior of peptides and other analytes. Already, existing algorithms provide excellent performance based on empirical rules or large sets of RPLC training data.

View Article and Find Full Text PDF

The oral pathogen, Porphyromonas gingivalis has a general O-glycosylation system which it utilises to modify hundreds of proteins localised outside of the cytoplasm. The O-glycan is a heptasaccharide that includes a putative L-fucose and N-acetylgalactosamine (GalNAc) as the 5th and 6th sugar residues respectively. The putative L-fucose is expected to be synthesized as GDP-L-fucose involving the enzymes Gmd (PGN_1078) and Fcl (PGN_1079), while GalNAc is putatively epimerised from GlcNAc by GalE (PGN_1614).

View Article and Find Full Text PDF

This research explores the impact of arsenic exposure on serum protein profiles in type 2 diabetes patients, with an emphasis on the AS3MT protein as a biomarker. Utilizing Bradford protein assay, SDS-PAGE, HPLC, and mass spectrometry, we quantified and analyzed variations in serum protein levels, focusing on differences between control groups (82.94 ± 8.

View Article and Find Full Text PDF

Background: Commonly, ligand-binding platforms are being used for immunogenicity assessment, but with the recent advent of liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) for protein quantification, this technology has become an alternative for the measurement of anti-drug antibodies (ADAs), when combined with an immunocapture step to extract them out of the biological sample.

Method: The monoclonal antibody adalimumab was immobilized on magnetic beads to isolate ADAs against this drug from serum samples. Multiple repetitions of immunopurification were used to minimize nonspecific binding and improve drug tolerance while maintaining sufficient recovery.

View Article and Find Full Text PDF

Here we show that when using a mix of 274 light synthetic peptide standards (NAT) as surrogates for 270 human plasma proteins, as well as stable isotope-labelled standards (SIS) as normalizers (both from MRM Proteomics Inc.) for targeted quantitative analysis by liquid chromatography multiple reaction monitoring mass spectrometry (LC/MRM-MS), the Seer Proteograph™ platform allowed for the enrichment and absolute quantitation of up to an additional 62 targets (median) compared to two standard proteomic workflows without enrichment, representing an increase of 44%. The nanoparticle-based fractionation workflow resulted in improved reproducibility compared to a traditional proteomic workflow with no fractionation (median 8.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!