AI Article Synopsis

  • The apocrine secretory mechanism involves the pinching off of the cell's apical cytoplasm to form a structure called an aposome, but its detailing has not been extensively studied.
  • Researchers investigated proteins linked to cytokinesis in human axillary apocrine glands, finding several proteins (like actin and myosin II) associated with the process.
  • Their results suggest that the final steps of apocrine secretion resemble cytokinesis, potentially regulated by SNARE-mediated membrane fusion, providing new insights into how these glands function.

Article Abstract

The apocrine secretory mechanism is a mode of secretion by which the apical part of the cell cytoplasm is pinched off, which leads to the formation of an aposome. The distinct mechanism of formation and decapitation of the aposome is not well investigated. Only few proteins are known that are involved in this secretory mechanism. We studied the human axillary apocrine gland and looked at proteins associated with cytokinesis, a process that is comparable to the pinching-off mechanism of apocrine glandular cells. By immunohistochemistry, we detected actin, myosin II, cytokeratin 7 and 19, α- and β-tubulin, anillin, cofilin, syntaxin 2, vamp8/endobrevin and septin 2. In highly active glandular cells, these proteins are located at the base of the apical protrusion when the aposome is in the process of being released or are concentrated in the cap of the apical protrusion. These findings demonstrate new insights on apocrine secretory mechanisms and point to similarities to the terminal step of cytokinesis, which is regulated by a SNARE-mediated membrane fusion event.

Download full-text PDF

Source
http://dx.doi.org/10.14670/HH-26.177DOI Listing

Publication Analysis

Top Keywords

apocrine secretory
12
secretory mechanism
12
human axillary
8
axillary apocrine
8
proteins involved
8
mechanism apocrine
8
glandular cells
8
apical protrusion
8
apocrine
6
mechanism
5

Similar Publications

Morphology of the head-associated exocrine glands in Cornitermes cumulans with the description of a novel gland for the worker caste.

Tissue Cell

December 2024

Laboratório de Comportamento e Ecologia de Insetos Sociais, Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil.

Exocrine glands are important mediators of communication in eusocial insects and the description of novel glands reflects the complex context in which these animals live. Here we revisit the head-associated glands in workers of the Neotropical termite Cornitermes cumulans through histological analysis and describe a novel gland for this caste, the intramandibular glands. This structure is located underneath the cuticle of the dorsodistal part of each mandible.

View Article and Find Full Text PDF

Dry mouth results from decreased saliva secretion due to aging or drug side effects. Decreased saliva secretion causes dryness in the oral cavity that makes swallowing difficult and increases the risk of aspiration pneumonia. There are few fundamental treatments for dry mouth.

View Article and Find Full Text PDF

Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of is an excellent model for studying exocytosis.

View Article and Find Full Text PDF
Article Synopsis
  • Prostate cancer treatment resistance is a major challenge, with genomic studies revealing how cancer cells evade therapies, yet the tumor microenvironment's (TME) role remains unclear.
  • A study using advanced techniques on samples from 120 patients offers a detailed transcriptomic profile of the prostate TME throughout the treatment process.
  • The research highlights a unique cell type called club-like cells that interact with the immune system, suggesting their involvement in inflammation and resistance to androgen deprivation therapy, indicating they could be potential targets for new treatments.
View Article and Find Full Text PDF

Recent studies suggest that trichorhinophalangeal syndrome type 1 (TRPS1) is sensitive immunomarker for breast carcinoma (BC). Salivary duct carcinoma (SDC) of salivary gland can share similar morphologic and immunophenotypic features with BC. This study aimed to assess the expression of TRPS1 in SDC and other salivary gland tumors (SGTs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!