Since the development of the first vaccines, modern medicine has been consistently aiming to improve the efficacy of immune responses. Traditionally, adjuvants have been used as non-specific immune modulators to enhance recognition and activation against a desired antigen. By providing 'danger' signals to the immune system, adjuvants activate innate immunity, which enhances the development of protective and therapeutic adaptive immune responses. The newest class of immune modulators bypasses the innate response and targets cells of the adaptive response directly. Targeted immunomodulatory therapy is focused primarily on the activation of costimulatory receptors (eg, 4-1BB, OX40 and GITR [glucocorticoid-induced TNF receptor-related gene]) or the blockade of co-inhibitory receptors (eg, CTLA-4, PD-1 and PD-L1) on T-cells during activation and/or effector responses. With promising clinical results obtained to date, immunomodulatory therapy is becoming an integral part of immunotherapeutic approaches. The modulation of GITR is listed as one of the top 25 most promising research areas by the NCI, and has demonstrated potential in both antitumor and vaccine settings. This review discusses the role of GITR as a potential target for immunomodulatory therapy, as well as the research involved in understanding the mechanisms of anti-GITR therapy and current progress in translation into the clinic.
Download full-text PDF |
Source |
---|
Front Biosci (Landmark Ed)
January 2025
Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Morehouse School of Medicine, Atlanta, GA 30310, USA.
Immunology advances have increased our understanding of autoimmune, auto-inflammatory, immunodeficiency, infectious, and other immune-mediated inflammatory diseases (IMIDs). Furthermore, evidence is growing for the immune involvement in aging, metabolic and neurodegenerative diseases, and different cancers. However, further research has indicated sex/gender-based immune differences, which further increase higher incidences of various autoimmune diseases (AIDs), such as systemic lupus erythematosus (SLE), myasthenia gravis, and rheumatoid arthritis (RA) in females.
View Article and Find Full Text PDFViruses
January 2025
Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
In this narrative review, we explore the burden and risk factors of various herpesvirus infections in patients receiving chimeric antigen receptor T-cell (CAR-T) therapy or bispecific antibodies (BsAb) for the treatment of hematologic malignancies. Antiviral prophylaxis for herpes simplex/varicella zoster viruses became part of the standard of care in this patient population. Breakthrough infections may rarely occur, and the optimal duration of prophylaxis as well as the timing of recombinant zoster immunization remain to be explored.
View Article and Find Full Text PDFViruses
January 2025
Laboratory of Infectious Diseases, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea.
Self-assembling ferritin nanoparticle technology is a widely used vaccine development platform for enhancing the efficacy of subunit vaccines by displaying multiple antigens on nanocages. The dengue virus (DENV) envelope domain III (EDIII) protein, the most promising antigen for DENV, has been applied in vaccine development, and it is essential to evaluate the relative immunogenicity of the EDIII protein and EDIII-conjugated ferritin to show the efficiency of the ferritin delivery system compared with EDIII. In this study, we optimized the conditions for the expression of the EDIII protein in , protein purification, and refolding, and these optimization techniques were applied for the purification of EDIII ferritin nanoparticles.
View Article and Find Full Text PDFViruses
January 2025
Department of Microbiology, Clínica Universidad de Navarra, 31008 Pamplona, Spain.
The emergence of new variants and diverse vaccination regimens have raised uncertainty about vaccine effectiveness against SARS-CoV-2. This study aims to investigate the impact of Omicron primo-/reinfection and primary vaccination schedules on the immunogenicity of an mRNA-based booster dose over a six-month period. We conducted a prospective cohort study to assess the durability and level of antibodies of 678 healthcare workers fully vaccinated against COVID-19.
View Article and Find Full Text PDFViruses
January 2025
Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-Ku, Sapporo 060-0818, Hokkaido, Japan.
Bovine viral diarrhea (BVD) is caused by the BVD virus (BVDV) and has been reported worldwide in cattle. To estimate BVDV circulation among cattle where few BVD cases were reported in southern Japan, 1910 serum samples collected from 35 cattle farms without a BVD outbreak were investigated to detect antibodies against BVDV-1 and BVDV-2 using an indicator virus with a cytopathogenic effect and the luciferase gene, respectively. Neutralizing antibodies against BVDV-1 and BVDV-2 were detected more frequently in 18 vaccinated farms than in 17 nonvaccinated farms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!