Monitoring of kratom or Krypton intake in urine using GC-MS in clinical and forensic toxicology.

Anal Bioanal Chem

Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, 66421 Homburg, Saar, Germany.

Published: April 2011

The Thai medicinal plant Mitragyna speciosa (kratom) is misused as a herbal drug. Besides this, a new herbal blend has appeared on the drugs of abuse market, named Krypton, a mixture of O-demethyltramadol (ODT) and kratom. Therefore, urine drug screenings should include ODT and focus on the metabolites of the kratom alkaloids mitragynine (MG), paynantheine (PAY), speciogynine (SG), and speciociliatine (SC). The aim of this study was to develop a full-scan gas chromatography-mass spectrometry procedure for monitoring kratom or Krypton intake in urine after enzymatic cleavage of conjugates, solid-phase extraction, and trimethylsilylation. With use of reconstructed mass chromatography with the ions m/z 271, 286, 329, 344, 470, 526, 528, and 586, the presence of MG, 16-carboxy-MG, 9-O-demethyl-MG, and/or 9-O-demethyl-16-carboxy-MG could be indicated, and in case of Krypton, with m/z 58, 84, 116, 142, 303, 361, 393, and 451, the additional presence of ODT and its nor metabolite could be indicated. Compounds were identified by comparison with their respective reference spectra. Depending on the plant type, dose, administration route, and/or sampling time, further metabolites of MG, PAY, SG, and SC could be detected. The limits of detection (signal-to-noise ratio of 3) were 100 ng/ml for the parent alkaloids and 50 ng/ml for ODT. As mainly metabolites of the kratom alkaloids were detected in urine, the detectability of kratom was tested successfully using rat urine after administration of a common user's dose of MG. As the metabolism in humans was similar, this procedure should be suitable to prove an intake of kratom or Krypton.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-010-4464-3DOI Listing

Publication Analysis

Top Keywords

kratom krypton
12
monitoring kratom
8
krypton intake
8
intake urine
8
metabolites kratom
8
kratom alkaloids
8
kratom
7
krypton
5
urine
5
urine gc-ms
4

Similar Publications

Unintentional fatal intoxications with mitragynine and O-desmethyltramadol from the herbal blend Krypton.

J Anal Toxicol

May 2011

National Board of Forensic Medicine, Department of Forensic Genetics and Forensic Toxicology, SE-58758 Linköping, Sweden.

The leaves of Kratom, a medicinal plant in Southeast Asia, have been used as an herbal drug for a long time. At least one of the alkaloids present in Kratom, mitragynine, is a mu-receptor agonist. Both Kratom and an additional preparation called Krypton are available via the internet.

View Article and Find Full Text PDF

Monitoring of kratom or Krypton intake in urine using GC-MS in clinical and forensic toxicology.

Anal Bioanal Chem

April 2011

Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, 66421 Homburg, Saar, Germany.

The Thai medicinal plant Mitragyna speciosa (kratom) is misused as a herbal drug. Besides this, a new herbal blend has appeared on the drugs of abuse market, named Krypton, a mixture of O-demethyltramadol (ODT) and kratom. Therefore, urine drug screenings should include ODT and focus on the metabolites of the kratom alkaloids mitragynine (MG), paynantheine (PAY), speciogynine (SG), and speciociliatine (SC).

View Article and Find Full Text PDF

Aim: A drug and alcohol withdrawal rehabilitation centre requested an analysis for "Krypton" in urine of a former opiate-addictive woman. She showed an altered clinical picture and behaviour with miosis, itchiness, agitation, and moderate euphoria after 3 months of until than successful treatment. Literature search revealed that "Krypton" is said to contain "Kratom" (leaves of Mitragyna speciosa), but could also contain O-desmethyltramadol (European Monitoring Centre for Drugs and Drug Addiction thematic paper "Spice").

View Article and Find Full Text PDF

The thermally induced order-to-disorder transition of a monolayer of krypton (Kr) atoms adsorbed on a graphite surface is studied based on a coarse molecular-dynamics (CMD) approach for the bracketing and location of the transition onset. A planar order parameter is identified as a coarse variable, psi, that can describe the macroscopic state of the system. Implementation of the CMD method enables the construction of the underlying effective free-energy landscapes from which the transition temperature, T(t), is predicted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!