Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The effects of gonadotropin-releasing hormone (GnRH) and GnRH-associated peptide (GAP) on cytosolic free calcium concentration ([Ca(2+)](i)) were investigated in 20 human nonfunctioning pituitary adenomas. We divided these tumors into three classes according to their response pattern to hypothalamic peptides. In type I adenomas (8 out of 20 adenomas), GnRH and GAP mobilized intracellular calcium ions stored in a thapsigargin (TG)-sensitive store. For the same concentration of agonist, two distinct patterns of GnRH-GAP-induced Ca(2+) mobilization were observed (1) sinusoidal oscillations, and (2) monophasic transient. The latter is followed by a protein kinase C (PKC)-dependent increase in calcium influx through L-type channels. In type II adenomas (7 out of 20 adenomas), GnRH and GAP only stimulate calcium influx through dihydropyridine-sensitive Ca(2+) channels by a PKC-dependent mechanism. TG (1 μM) did not affect [Ca(2+)](i) in these cells, suggesting that they do not possess TG-sensitive Ca(2+) pools. All the effects of GnRH and GAP were blocked by an inhibitor of phospholipase C (PLC), suggesting that they were owing to the activation of the phosphoinositide turnover. Type I and type II adenoma cells showed spontaneous Ca(2+) oscillations that were blocked by dihydropyridines and inhibition of PKC activity. GnRH and GAP had no effect on the [Ca(2+)](i) of type III adenoma cells that were also characterized by a low resting [Ca(2+)](i) and by the absence of spontaneous Ca(2+) fluctuations. K(+)-induced depolarization provoked a reduced Ca(2+) influx, whereas TG had no effect on the [Ca(2+)](i) of type III adenoma cells. The variety of [Ca(2+)](i) response patterns makes these cells a good cell model for studying calcium homeostasis in pituitary cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF02782757 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!