While a strong relationship between the hypercholesterolemia of diabetes and premature atherosclerosis is established, the etiology for the elevation in serum cholesterol in this disease is unknown. To determine whether diabetic hypercholesterolemia may be related to alterations in hepatic cholesterol transport capacity, sterol carrier protein-2 (SCP2) expression was examined in rats treated with streptozotocin (SZT). Furthermore, this study examined whether 17β-estradiol and insulin confer a protective effect on liver cholesterol homeostasis by maintaining hepatic SCP2 levels. SCP2 protein and mRNA expression were examined 13 days following SZT-induced diabetes onset and in diabetic rats treated with estradiol (1 cm silastic implant) or insulin (12 units/day). Data indicate that SCP2 protein levels were significantly reduced in the diabetic animals and that SCP2 protein expression in the liver was inversely related to the level of serum cholesterol in the diabetic animals. In contrast, SCP2 mRNA levels examined by slot blot, ribonuclease protection assay, and Northern blot analysis were significantly elevated. Both insulin and estradiol were able to enhance the expression of SCP2 protein in the liver following SZT treatment. The results of this investigation clearly indicate that hepatic SCP2 protein levels are significantly altered in the diabetic state suggesting that cholesterol transport capacity is reduced in the SZT-treated diabetic rat. The inverse relationship between serum cholesterol and hepatic SCP2 protein content suggests that the reduction in this protein may be a contributing factor in diabetic hypercholesterolemia.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02953020DOI Listing

Publication Analysis

Top Keywords

scp2 protein
24
serum cholesterol
12
hepatic scp2
12
scp2
9
sterol carrier
8
carrier protein-2
8
diabetic
8
diabetic rat
8
diabetic hypercholesterolemia
8
cholesterol transport
8

Similar Publications

Background: The current study aims to elucidate the key molecular mechanisms linked to endoplasmic reticulum stress (ERS) in the pathogenesis of sepsis-induced cardiomyopathy (SIC) and offer innovative therapeutic targets for SIC.

Methods: The study downloaded dataset GSE79962 from the Gene Expression Omnibus database and acquired the ERS-related gene set from GeneCards. It utilized weighted gene co-expression network analysis (WGCNA) and conducted differential expression analysis to identify key modules and genes associated with SIC.

View Article and Find Full Text PDF

The fruit and other parts of Momordica cymbalaria are known to have medicinal properties. The study investigates the chemical composition and functional groups of M. cymbalaria fruits to assess the insecticidal potential of its bioactive metabolites.

View Article and Find Full Text PDF

Expanding the scope of copper artificial metalloenzymes: A potential fluorinase?

J Inorg Biochem

February 2025

EaStCHEM School of Chemistry, Joseph Black Building, Kings Buildings, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK. Electronic address:

Biocatalysts for fluorination are rare, and thus of great interest for artificial enzyme design. Biohybrid catalysts including Cu-based DNAzymes and dinucleotide catalysts can catalyse enantioselective electrophilic fluorination of β-ketoesters. Here we report the investigation of Cu-based artificial metalloenzymes as catalysts for electrophilic fluorination reactions.

View Article and Find Full Text PDF

Regional and longitudinal dynamics of human milk protein components assessed by proteome analysis on a fast and robust micro-flow LC-MS/MS system.

Food Chem

February 2025

School of Basic Medical Science, Anhui Medical University, Hefei 230032, PR China; State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, PR China. Electronic address:

An in-depth exploration of molecular composition of human milk could provide a scientific basis for the development of substitutes. The present study was conducted to analyze human milk proteins from 110 individuals from five regions of China and across three stages of lactation to investigate the change patterns. We developed a micro-flow liquid chromatography tandem mass spectrometry (μLC-MS/MS) system with data-independent acquisition (DIA) proteomics technology that can rapidly and stably characterize the human milk proteome.

View Article and Find Full Text PDF

The proteome and metabolome changes distinguish the effect of dietary energy levels on the development of ovary in chicken during sexual maturity.

Poult Sci

December 2024

State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China. Electronic address:

To deeply understanding the impact of peripheral energy level on the development of ovaries during the sexual maturation of chicken, in this study, the ovaries and serum of sexually mature and immature chickens at the same age from different energy level groups were collected, and the proteome and metabolome were detected. The results of ovarian and serum metabolomics revealed that dietary energy levels affected the energy metabolism and fatty acid oxidation of ovary in chicken, including the up-regulated expression of dihydroacetone phosphate and α-linolenic acid in high energy level groups. The results of proteomics showed that peripheral energy levels affected the catecholamine biosynthesis and metabolism in ovary before sexual maturation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!