Glutamine is the primary metabolic fuel of the small intestine. To determine the effects of glutamine on intestinal electrolyte transport, piglet (3 days to 3 wk old) jejunum was bathed in Ussing chambers in a buffer containing 10 mM serosal glucose, and the effects of different concentrations of mucosal L-glutamine and D-glucose on short-circuit current and transmucosal Na+ and Cl- transport were measured. Resting jejunum secreted Na+ and Cl- in an electrogenic manner. In contrast to mucosal D-glucose (30 mM), which promoted electrogenic Na+ absorption (1.8 mueq.cm-2.h-1), mucosal L-glutamine (30 mM) stimulated both Na+ (2.7 mueq.cm-2.h-1) and Cl- (2.2 mueq.cm-2.h-1) absorption. This NaCl-absorptive jejunal response depended on the presence of both Na+ and Cl-, did not appear until animals were greater than 7 days of age, and was not observed with glucose, phenylalanine, or mannitol. Serosal, as well as mucosal, glutamine (30 mM) promoted electroneutral NaCl absorption. A small electrogenic Na(+)-absorptive response to L-glutamine was also observed. The effect of L-glutamine on jejunal NaCl transport resembles that of other metabolic fuels on colonic transport; its mechanism remains to be determined. We conclude that glutamine promotes electroneutral salt absorption in the small intestine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpgi.1990.259.1.G99 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!