AI Article Synopsis

  • Primary cilia are essential cellular structures that play critical roles in sensing and signaling, and their dysfunction is linked to various diseases known as ciliopathies.
  • Neurons in the mammalian brain have primary cilia that house specific signaling proteins, but the functions of most of these proteins in neurons remain largely unexplored.
  • This research reveals that dopamine receptor 1 (D1) is found in the cilia of mouse central neurons and that its movement between cilia and the rest of the cell is influenced by environmental factors, involving proteins associated with Bardet-Biedl syndrome (BBS).

Article Abstract

Primary cilia are nearly ubiquitous cellular appendages that provide important sensory and signaling functions. Ciliary dysfunction underlies numerous human diseases, collectively termed ciliopathies. Primary cilia have distinct functions on different cell types and these functions are defined by the signaling proteins that localize to the ciliary membrane. Neurons throughout the mammalian brain possess primary cilia upon which certain G protein-coupled receptors localize. Yet, the precise signaling proteins present on the vast majority of neuronal cilia are unknown. Here, we report that dopamine receptor 1 (D1) localizes to cilia on mouse central neurons, thereby implicating neuronal cilia in dopamine signaling. Interestingly, ciliary localization of D1 is dynamic, and the receptor rapidly translocates to and from cilia in response to environmental cues. Notably, the translocation of D1 from cilia requires proteins mutated in the ciliopathy Bardet-Biedl syndrome (BBS), and we find that one of the BBS proteins, Bbs5, specifically interacts with D1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3368249PMC
http://dx.doi.org/10.1007/s00018-010-0603-4DOI Listing

Publication Analysis

Top Keywords

neuronal cilia
12
primary cilia
12
cilia
9
dopamine receptor
8
receptor localizes
8
bardet-biedl syndrome
8
signaling proteins
8
proteins
5
localizes neuronal
4
cilia dynamic
4

Similar Publications

Background: Extracellular vesicles are easily accessible in various biofluids and allow the assessment of disease-related changes in the proteome. This has made them a promising target for biomarker studies, especially in the field of neurodegeneration where access to diseased tissue is very limited. Genetic variants in the LRRK2 gene have been linked to both familial and sporadic forms of Parkinson's disease.

View Article and Find Full Text PDF

The cerebral cortex is critical for advanced cognitive functions and relies on a vast network of neurons to carry out its highly intricate neural tasks. Generating cortical neurons in accurate numbers hinges on cell signaling orchestrated by primary cilia to coordinate the proliferation and differentiation of cortical stem cells. While recent research has shed light on multiple ciliary roles in corticogenesis, specific mechanisms downstream of cilia signaling remain largely unexplored.

View Article and Find Full Text PDF

Brain neurons utilize the primary cilium as a privileged compartment to detect and respond to extracellular ligands such as Sonic hedgehog (SHH). However, cilia in cerebellar granule cell (GC) neurons disassemble during differentiation through ultrastructurally unique intermediates, a process we refer to as cilia deconstruction. In addition, mature neurons do not reciliate despite having docked centrioles.

View Article and Find Full Text PDF

C21ORF2 mutations point towards primary cilia dysfunction in amyotrophic lateral sclerosis.

Brain

December 2024

Department of Neurosciences, Laboratory of Neurobiology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000 Leuven, Belgium.

Progressive loss of motor neurons is the hallmark of the neurodegenerative disease amyotrophic lateral sclerosis (ALS), but the underlying disease mechanisms remain incompletely understood. In this study, we investigate the effects of C21ORF2 mutations, a gene recently linked to ALS, and find that primary cilia are dysfunctional. Human patient-derived mutant C21ORF2 motor neurons have a reduced ciliary frequency and length.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!