Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Four 3D 10-ring zeolites, IM-5, TNU-9, ZSM-11 and ZSM-5, with Si/Al = 14-24 and crystal sizes below 2 microns, were tested as catalysts for the methanol to hydrocarbons reaction (MTH) at atmospheric pressure, 350 °C and WHSV = 9 h(-1). All catalysts gave initially full methanol conversion, and showed strikingly similar effluent product selectivities. However, their life-time duration differed significantly, and decreased in the order: ZSM-11 > ZSM-5 ≫ TNU-9 > IM-5. A main difference between the two groups of stability behaviour was the size of cavities formed by channel intersections; larger cavities in TNU-9 and IM-5 leading to polyaromatics formation and a more rapid deactivation compared to ZSM-5 and ZSM-11. Effluent yield-conversion plots suggested that polymethylated benzene intermediates were more important in IM-5 and TNU-9 than in ZSM-5 and ZSM-11, where alkene methylation and cracking reactions seemed to dominate product formation. However, this difference had only minor influence on effluent selectivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c0cp01982h | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!